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DERIVATIONS OF A W »-ALGEBRAS1

JAMES C.   DEEL

Abstract. It is proved that every derivation on an AW-

algebra of type IIL with central trace is inner. The proof employs

a result on the algebraic decomposition of such algebras which is

of interest even in the W* case.

1. Introduction and definitions. In recent years the study of derivations

on various kinds of C*-algebras has received considerable attention. The

most important result of this work is due to Sakai and Kadison : Every

derivation on a If*-algebra is inner. Much earlier, Kaplansky [11]

showed that every derivation on an A If'-algebra of type I is inner,

so it is natural to conjecture that arbitrary A If *-algebras also have this

property. In Corollary 4.2 we will verify this for an A W""-algebra of type IIX

with central trace.

Our proof employs a result on the algebraic decomposition of such

algebras (Corollary 3.4) which shows that the algebraic decomposition

is actually topological; the algebra is described as the set of bounded,

weakly continuous fields of operators over the maximal ideal space.

This result was discovered independently by Takemoto and Tomiyama

[14] in the W* case. The continuous theory is both simpler and more

general than the usual measure-theoretic reduction for separably rep-

resented von Neumann algebras, and it appears likely that future refine-

ments will provide a nonspatial reduction theory enjoying most of the

features of the direct integral decomposition.

Let 31 be a finite /41f*-algebra, 3 its center. F. B. Wright [19] showed
that % is strongly semisimple; i.e., % can be imbedded as a subdirect

product 3i£ Y\AX, xe X, where each Ax is a simple C*-algebra with

identity lz, such that

(1) for each xeX, Ax={a(x):a e %}.

Here JFis the maximal ideal space of SI, and Ax^&¡x, xe X. Furthermore,

A »""-algebras are weakly central [19], and hence

(2) 3 consists precisely of the functions xwoc(jc)1x, * g C(X).
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This allows us to identify $ with C(X). Finally, if 21 is of type II, with a

central trace Tr:2l->-3> then

(3) each Ax is a W*-factor of type II1; and

(4) for each a e 21, the map M-*trx(a(x)) is continuous on X, where

trx: Ax->-C is the canonical trace of Ax.

Wright [19] proved that each Ax is an A W*-factor of type Hj having

trace trx given by trx(<z(x))=Tr(a)(;c), a e 21, and Feldman [4], [5] showed

that any ,4W*-factor with trace is a W*-factor. In the type I case the

quotients Ax are finite factors, but they may be of type II on a nowhere

dense set in X. If one drops the assumption of a trace on 21, then the Ax

are finite ,4W*-factors possibly without trace [21]; a proof of this is

sketched in [1], along with an improved proof of strong semisimplicity.

More recently, Takesaki [16] and Vesterstrom [17] have considered the

quotient modulo an ideal which is not maximal.

It is not known whether all finite A W*-algebras have central trace.

There are rather weak conditions which imply the existence of a trace

(see [2], [7], [20]), and Yen [21] showed that it would suffice to settle

this question in the factor case. A finite ,4 W*-algebra 21 has a central

trace if and only if 21 can be imbedded as an A iV*-subalgebra of a type I

A W*-algebra having the same center, and in this case 21 is equal to its

bicommutant in the type I algebra (see [7], [18]). J. Dixmier showed in

[2] that finite W*-algebras have central trace, and that if a C*-algebra

with identity has a central trace, then the trace is given by the approxi-

mation theorem, hence is unique.

If 2l£ TJAX, xe X, is the algebraic decomposition of a finite A W*-

algebra, then A" is a Stonian space, since 3 is an A H^*-algebra. However,

there are C*-algebras which satisfy properties (l)-(4) above and have

AW* center, but which are not AW*-algebras. For example, if X is a

compact space and M is a W*-factor of type II,, then the C* tensor

product C(X)®M [15] is identified with the algebra of norm continuous

functions from A'into M, and hence this algebra satisfies (l)-(4); the same

is true for the algebra of bounded, strong* continuous functions, or for

any intermediate C*-algebra. If X is a hyperstonian space [3] and M is

a factor on a separable Hubert space, then it follows from [5] that none

of these examples is an A W*-algebra.

Definition. Let X be a compact T2 space, and for each x e X let

Ax be a If ""-factor of type Ux. A C*-subalgebra 2Içn 4r> xe X, which

satisfies conditions (l)-(4) above will be called a type IIj C*-algebra with

continuous trace. In other words, 21 is a strongly semisimple, weakly

central C*-algebra with identity which has a central trace, and whose

simple components are factors of type l\x.

If one takes the finite factors Ax in this definition to be of type I instead
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of type II, then 21 is an "ordinary" C*-algebra with continuous trace;

we will not pursue this analogy here, but it is responsible for our terminol-

ogy. In the theory which follows there is really no need to exclude the

possibility that some of the Ax are finite of type I. However, our results are

of interest mainly in the type II case, since the structure of type I A W*-

algebras is known [11].

By examining the relationship between the algebraic decomposition

of a type IL, A W*-algebra with trace and its representation as an algebra

of module operators on an A W *-module over the center, and then applying

a theorem of H. Widom [18, Theorem 4.3], we will prove (Corollary 3.4)

that if 2lçF|^i' XG A', is a type IIX C*-algebra with continuous trace

over a Stonian space X, then 21 is an A W*-algebra if and only if 21 is

"closed" in T\ Ax in the following sense:

(5) If b G F] ^i> and if the map xh-*trx(a(x)b(x)) is continuous on X

for each a e 21, then b e 21.

The result on derivations is proved by showing that any derivation on

an arbitrary type 1^ C*-algebra with continuous trace is induced by an

element b which satisfies the condition in (5).

Notation. If {V^iel} is a collection of normed spaces, we denote by

YJVi, ie I, the set of functions ii-*v(i) e V{ such that

sup{||t>(OI|:/G/}< oo,

and we use the norm ||t;||=sup||i>(í)||, i el. If each V4 is a Banach space

(resp. C*-algebra, W*-algebra), then so is J~[ V(, i e I.

2. Construction of the trace completion. We begin with a simple

lemma which will play a key role in this section and §3.

2.1 Lemma. Let X be a completely regular space, 3=C(X), and for

each xe X let Vx and Wx be Banach spaces. Let ~ir be a linear subspace

of II *"». x e X, satisfying:
(1) Ifv ei^ and x e 3, then xve'f, where (xv)(x)=x(x)v(x), x e X.

(2) For each xe X, {v(x):v G T^"} is dense in Vx.

(3) For each ve'V the function xi-»||i;(x)|| is upper semicontinuous.

If F:T^-*n ***> xe X, is a bounded ^-linear map, then for each xe X

there is a unique bounded operator Tx: Vx-+Wx such that Tx(v(x)) = (Tv)(x)

for all vs-T. Furthermore, sup{||FJ :xe X}=\\T\\.

Proof. Fix xe X. For any veY" and e>0 there is a neighborhood

U of x such that \\v(y)\\ ̂||»(x)||+e for all y e U. Let a:*—[0, 1] be a

continuous   function   with   a(x)=l,   x(X\U)={0}.   Then

\\xv\\^sup{\\v(y)\\:yeU}<\\v(x)\\+e,
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so by 3-linearity of T,

\\(Tv)(x)\\ = ||a(*)(7i0(*)y = \\(T(xv))(x)\\

< ||r(at»)|| = ¡FU -imii

^ imi(IW*)!l + e)

for all £>0. Thus ||(Ft»)(x)|| = ||F|| • ||(p(jc)|| for all pef. Hence we can

define Tx on the dense subspace {v(x):vei/~} by the desired formula,

Tx(v(x))=(Tv)(x), and obtain a well-defined bounded linear map of

norm at most || T\\ ; let Tx also denote the unique extension of this map to

all of Vx. Then || Tx\\ = || T\\. Finally, if v 6 f, then

\\Tv\\ --= mpK7bKx)| = sup||r,(»(*))B

=suptlFr||||I»(x)|| = (sup||Ft||)||I»||;

hence sup || Tx || = || T\\.    D

2.2 Notation and discussion. Let %'^Y\AX, xeX, be a type llx C*-

algebra with continuous trace, 3=C(X) its center. For each a e 21,

define Tr(a) e 3 by Tr(a)(x)=trI(a(x)), xeX; then Tr is a 3-valued

trace on 21, and hence defining (a, b)=Tr(b*a), a, ¿»e2I, provides a

3-valued inner product making 21 into an inner product space over 3»

as in [18]. Widom [18, p. 314] showed that any inner product space ^

over a commutative A W* -algebra 3 can be completed to an A W* -module

Jf over 3> and it follows from [18, Lemma 2.4] that Jf is isomorphic

to the 3-dual of J(, i.e., the set JC* of all 3-hnear maps to.JK—>-3 which
are bounded relative to the norm defined by the inner product of dt'. The

goal of this section is to give an explicit description of 2f and, if A" is a

Stonian space, to show how the 3-valued inner product is defined on the

completion of 21.

For each xeX, let Hx be the Hubert space completion of Ax in the norm

l|aa.||2=trx(ii*ûfa.)x/2, axeAx. Since trx:Ax->-C has norm one, we have

IqJtálsl. "xeAx, and hence U (Ax, || • \\)^U W„ II ■ WÙ^Yl»,-
The norm sup||a(;t)||2, x e X, on FJ Ax will be denoted by ||a||2 when there

is danger of confusion with the C* norm, but we will omit the subscript

on the norm of arbitrary elements of Hx or \~[ Hx, x e X.

Finally, define 3^—{fe \~\ Hx:x*-*(a(x),f(x)) is continuous on X

for each a e 21}. Clearly 2l£ 3Hf.

2.3 Proposition. The 3-dual of (21, || • ||2) is %y = {(o,:feJf}, where
(Of(a) e 3 is defined by <of(a)(x)=(a(x),f(x)), ae%,xeX. The correspond-

ence fi-HOf is an isometric conjugate 3-Iinear isomorphism of ¿F onto 2T.

Proof. Let a>e2f. By Lemma 2.1 with VX=HX, WX=C, V=%,

we obtain, for each x, a bounded linear functional cox on Hx such that
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(o(à)(x)=wx(a(x)), ae2I, and we have ||co||=sup||coJ|. Let f(x) e Hx be

the vector such that mx( ■)=(■ ,f(x)). Then ||/(x)|| = |K||, so fe]~[ Hx

with 11/11 = ||to||. For any a G 21, (a(x),f(x))=cox(a(x)) = (o(a)(x), which

is a continuous function of x, since co(a) e 3; hence/G Jif, and a>=u>f.

Conversely, if fe3fc°, then w/:2I-^3 is 3-lmear> and Il&v(a)ll3=
sup|(a(x),/(x))|^||a|y/||; hence w, e 2f. The last statement of the

proposition follows by evaluating at each point.    D

2.4 Proposition. IffeJf and jci-»||/(jc)|| is continuous at x0, then

x\-+(f(x), g(x)) is continuous at x0for any g e ¿f.

Proof.   Given e>0, pick a e 21 with IKx0)-/(x0)|| <e/(3||g||). Then

\(f(x),g(x))-(f(x0),g(x0))\

^\(f(x)-a(x),g(x))\

+ \(a(x),g(x)) - (a(x0),g(x0))\ + \(a(x0) -f(x0),g(x0))\

^ \\f(x) - a(x)\\ ■ \\g\\ + \(a(x),g(x)) - (a(x0),g(x0))\ + e/3.

Since ||/(x)-a(x)|| = [||/(x:)||2-2 Re(f(x), a(x))+\\a(xW)1'2 is continuous

at x0, and since (a(x), g(x)) is continuous, the first two terms will be less

than e/3 for all x close enough to x0.    D

For future reference we note the following fact, which follows from the

proof of 2.4.

2.5 Corollary. Let y be a subset of 21 such that for each xeX,

{s(x):s G St0} is dense in (Ax, \\ ■ \\2). If g e F] Hx ond (*(*)> ?(*)) is con-

tinuous on X for each seSf, then g e Jf '.

Proof. To show that (a(x), g(x)) is continuous at x0 if a e 21, approxi-

mate a(x0) by s(x0), where s eSf, and proceed as in the proof of 2.4;

||a(jc)—f(jr)||2 is continuous since a—s e 21.    D

2.6 Proposition. IffeJtf, then the function xh-»||/(x)|| is lower semi-

continuous.

Proof. We must show that the set {xe X:\\f(x)\\^c} is closed for

each c^O. So let {xj be a net in X with ¡/(x^H ^c for all i, and let x.-ox

in X. For any a e 21 we have

à ^ Wf(xùV - ll/(*,) - a(xM2

= (a(Xi),f(xt)) + (/(*,), a(Xi)) - \\a(Xi)\\\

and the last expression is continuous, since/G J4?, so taking the limit as

x¿—x gives c2^[if(x)\\2-\\f(x)-a(x)\\2 for all a e21. But Ax is dense in

Hx,so\\f(x)\\^c.    D
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2.7 Proposition. Let 21 and JF be as in 2.2, and assume now that X

is a Stonian space. Then ¿F is the completion of 21 in Widow's sense. If

f,ge J^, then the function xy-*(f(x), g(x)) is continuous except on a set

of the first category in X, and (f,g) e 3 is the unique continuous function

which coincides with (f(x),g(x)) at the points where the latter function is

continuous. In particular, (f,g)(x)=(f(x),g(x)) if either ||/( • )|| or \\g( • )||

is continuous at x, by 2.4.

Proof. The first statement follows from 2.3, as noted in 2.2. If

f,ge JF, then by 2.6 the functions

«iW = \\f(x) + g(xW,       a.0) = \\f(x) - g(x)\\\

«»(*) = \\f(x) + ig(x)\\\      «4(*) = \\f(x) - ig(xW

are lower semicontinuous. By [3, p. 154] there exist A, • • • ,/S4 e 3

with ßf(x) = ol^x) except on a set of the first category. By the polarization

identity, the continuous function (f, g)=(ßx—ß2+ißs—ißi)l4 coincides

with (f(x), g(x)) except on a set of the first category. By computing on a

dense subset of X one easily verifies that this definition of (/ g) provides

an inner product on ¿4? which extends that of 21. The ,4 W*-module

axioms [11, p. 842] can also be verified directly using 2.3, making this

construction of JF independent of Widom's construction.    D

3. The standard module representation. Throughout this section let

2l£l~I Ax, xel,bea type IIj C*-algebra with continuous trace, and let

^F^Y\ Hx be as in 2.2. Unless otherwise stated we will assume that X is

a Stonian space, so that JF is an ,41f*-module over 3=C(X), by 2.7.

Let 93 denote the set of all bounded 3-linear maps T:J(f-*JF; 23 is an

A ff*-algebra of type I with center 3 [H]- For each xeX, let Bx be the

algebra of all bounded operators on Hx. We will study the representation

of 21 on JF defined by left multiplication on the submodule 2lÇ^,
and identify the bicommutant of the image of 21 in 23.

3.1 Lemma. If F 6 23, then for each xeX there is a unique operator

TxeBx such that (Ta)(x)=Txa(x) for all ae% and ||F||=sup||FJ|,

xeX. For each x, the map Ti-+Tx is linear and (T*)X=(TX)*. Finally, any

^-linear map F:2I->«?^ which is bounded relative to the norm || • ||2 on

21 extends uniquely to an element of 58.

Proof. The first statement follows by taking "f=21 in Lemma 2.1.

Linearity follows from uniqueness. For any a, b e 21,

(a(x), Ttb(x)) = (TXx), b(x)) = ((Ta)(x), b(x))

= (Ta, b)(x) = (a, T*b)(x) = (a(x), (T*)J,(x)),
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by 2.7. Thus (TX)*=(T*)X, since Ax is dense in Hx. The last statement is

[18, Lemma 2.4].    D

Define %=3^r\T\Ax={b eT\Ax:tt:x(a(x)b(x)) is continuous on X

for each a e 21}, and note that 21 is a two-sided module over 21, even if X

is not Stonian. For if a e 21 and b e 21, then for any c e 21, trx(c(x)a(x)6(x))

is continuous since ca e 21, and trI(c(x)è(x)a(x))=trI(a(x)c(x)è(x)) is

continuous since ac e 21; hence ab g2T and ba e 21.

If b e 1, then ||¿>a||2<;||Z>|| • ||a||2 for all a e 21, so by 3.1 the map a^ba

extends uniquely to an operator Lb e 23. Let F„ g 23 be the operator defined

similarly using right multiplication. In the notation of 3.1, (Lb)x=Lb(x) e

Bx, and hence (Lb)*=Lb. and ||LJ=sup||LMl)|| = ||¿>||; likewise for F„.

3.2 Lemma, (i) If ¿>g2I and fed?, then (Lbf)(x)=Lblx)f(x) and

(Rbf)(x)=Rblx)f(x)forallxeX.   '
(ii) F:2I-»-23 is an %-linear, *-preserving isometry.

Proof,    (i) Let b e 21,/ g 3V. For any a e 21 and any xeX,

((Lbf)(x), a(x)) = (Lbf, a)(x) = (/, b*a)(x)

= (/(*), Lb*lx)a(x)) = (Lb(x)f(x), a(x)),

by the last part of 2.7. Since Ax is dense in Hx, this proves the first formula;

the formula for Rb is proved in the same way.

(ii) If a G 21, b G 21, then for any c g 21 we have LaLb(c)=La(bc)=abc=

Lab(c) by part (i), and LbLa(c)=bac=Lba(c) is trivial. Hence LaLb=Lab

and LbLa=Lba.    D

3.3 Theorem. Let 'ä^TJA,,, xeX, be a type lît C*-algebra with

continuous trace, X Stonian. Let L^—® denote the image of "OS. under L.

Then the bicommutant of L% in 23 is L^.

Proof. First we claim that U^—R^. If ae21 and be% then

LaRb(c)=acb=RbLa(c) for any c e 21, by 3.2(f). Hence LaRb=RbLa, and

so FfS-Z^r. Conversely, if Te U& and Tx eBx is as in 3.1, then for any

a, c e 21 and any xeX,

0 = (TLa - LaT)(c)(x) - (TxLa(x) - Lalx)Tx)(c(x))

by 3.2(i). Hence Tx belongs to the commutant of LAx in Bx, and this

commutant is RA . Thus Tx=Rblx) for some b(x) e Ax, and sup||ô(x)|| =

suplir.»HIT! by*3.1, so beT\Ax. For any ae21, (Ta)(x)=a(x)b(x),
so taking a=\ gives F(1)=Z> e JtP. Thus b e 21 and T=Rb on 21, hence on

all of 3e.SoL^=R^.
Similar reasoning shows that R%=L%, and so L^=(Fa)'£Fá=jLs.

Thus it remains to show that F-£ (F^)'. So let a, b e 21; it suffices to show

that (LaRbc, d)=(RbLac, d), all c, d e 21, i.e., (cb, a*d)=(ac, db*). Except
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on a set of the first category in X we have (cb, a*d)(x)=(c(x)b(x),

a*(x)d(x)) and (ac,db*)(x)=(a(x)c(x),d(x)b*(x)), by 2.7. Hence the

continuous functions (cb, a*d) and (ac, db*) coincide on a dense set, so

are equal.    D

3.4 Corollary. Let 21 be as in the theorem. Then 21 is an AW*-

algebra if and only //"2I=2T.

Proof. In general, L% is an A JF*-algebra, in fact an A iT*-subalgebra

of the type I algebra 23, since it is a commutant in 23 by 3.3. If 2I=2T, then

L:2I-+23 is an isomorphism of 21 onto L%, so 21 is an AW*-algebra.

Conversely, if 21 is an AW*-alg,ebTa, then it must be finite, since it has

a trace. Hence, by the proof of [18, Theorem 4.3], L& is equal to its bi-

commutant in 23, and so 21=21 by Theorem 3.3.    D

3.5 Remarks. (1) If A" is a hyperstonian space, i.e., 3 is a W*-algebra

[3], then the type I algebra S is a W*-algebra [10], and L% is weakly

closed in any representation of 23 as a von Neumann algebra, since it is

a commutant. So in this case 3.4 determines when 21 is a W*-algebra.

(2) Even if 21 ;¿2T, the A W*-algebra Ly, has center Lä, and L% is finite

since it has the obvious central trace. Given a Stonian space X and a type

IIj factor M, we obtain a type IIj A H^*-algebra with trace by letting 21=

C(X)®M and forming L%; this generalizes a construction of Yen [20]. In

this case, 2T is the set of bounded, weakly continuous functions from X

into M. Feldman's results [5] show that the simple components Äx of

L% need not be isomorphic to M if M is a factor on a separable space.

One can show that in the general case, Ax is imbedded in Äx, and that if

b e 21, then (Lb)(x) "belongs to" Ax except on the set of the first category

where the function ||Z»( • )||2 is discontinuous. If a, b e2T, then LaLb=Lc,

where c is the unique element of 2T such that c(x)=a(x)b(x) except on a

set of the first category.

(3) After Feldman's discovery [5] that the factors which occur in the

algebraic decomposition of a W*-algebra are in some ways more compli-

cated than the algebra itself, there was little reason to prefer the algebraic

approach. The direct integral gives a measure theoretic decomposition,

of a separably represented von Neumann algebra into separably repre-

sented factors, and it is not restricted to the finite case. However, in

Corollary 3.4 we have a description of the elements of Yl-^x which

belong to 21 in terms of a topological condition which is easier to deal with

than the corresponding measure theoretic description. And as remark (2)

indicates, it should be possible to avoid the pathologies discovered by

Feldman by working modulo sets of the first category; the idea would be

to find a "well-behaved" subalgebra 2I0£2l such that 2I^Lfo. We will
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pursue these refinements, along with an examination of the semifinite

case (see [13]), in a later paper.

(4) Takemoto and Tomiyama [14] have proved independently that

21=21 if 21 is a finite, cr-finite W*-algebra. They introduce a "generalized pre-

dual space" for 21, and by using a normal measure on X, they obtain this

result from Sakai's characterization of JK*-algebras. It appears that a

similar proof of our result might be based on Halpern's generalization

[9] of Sakai's theorem.

In their theory, Takemoto and Tomiyama include decompositions over

the maximal ideal space of a W*-subalgebra 3o °f 3- The case 3o=3

provides the finest decomposition of 21, and insures that the component

PF*-algebras will be factors. However, the greater generality is useful

in comparing the decomposition of 21 with that of a subalgebra, and it

allows them to incorporate the results of Takesaki [16] and Vesterstrom

[17] into their theory. They also give an interesting characterization of the

W*-subalgebras of 21 which contain 3o 'n terms of the existence of suffi-

ciently many extreme points. In our approach, we would need to assume

the existence of a suitable 3o_value£i state, where 3o is an A W*-subalgebra

of 3, and use [18, Theorem 4.4] to conclude that 21 is equal to its bicom-

mutant in the resulting imbedding in a type I algebra with center 3o-

4. Derivations. In this section we return to the case of a type 11^

C*-algebra with continuous trace 'H^:l~[Ax, xeX, over an arbitrary

compact T2 space X. As in §3, let ^i=Y[Axr\Jif, which forms a two

sided module over 21.

4.1 Theorem. If Ô is a derivation on 21, then there exists c/e2l such

that ô(a)=da—ad, a e 21.

Proof. Since \~[AX is a W*-algebra, there exists de \~[AX with

0(a)—da—ad, a e 21, by Sakai's derivation theorem. Since d' defined by

d'(x)=d(x)—tTx(d(x))lx also induces ô, we may assume to begin with

that trx(d(x))=Q for all xeX. Using only the fact that da-adeW for

all a e 21, we have, for any a, b e 21, that

tTx(b(x)[d(x)a(x) - a(x)d(x)]) = trx([a(x)b(x) - b(x)a(x)]d(x))

is continuous, i.e., (c(x), d(x)) is continuous for each commutator c of

21. Let^be the linear span of {l}U{commutators of 21}; then (s(x), d(x))

is continuous for each seSF. To show that </e2T it suffices, by 2.5, to

show that {s(x) : s e £F} is dense in (Ax, \\ • \\ 2) for each xeX. The following

argument shows that this set is even dense relative to the C* norm of Ax.

Let A be a finite factor, tr its canonical trace. Let ae A, and let e>0.
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By the approximation theorem [2] there exist unitary elements uu • • •,

une A and real numbers tlf • • •, tn, it>0, Z?i=l, sucn that

||tr(û) - 2 '.tfûHill < e-
Thus

lia - Z «a?«) - {ufa)u¿ - tr(a)|| < e,

i.e., a can be approximated by a linear combination of commutators and

scalars.    D

4.2 Corollary. If21 is a type IL^ AW*-algebra with trace, then every

derivation on 21 is inner.

Proof.   In this case 21=21 by Corollary 3.4.

4.3 Remarks. (1) Theorem 4.1 remains valid if one assumes only that ô

is a derivation from 21 into 21. This form of 4.1 can be expressed concisely in

the language of cohomology theory by the statement /f1(2l,2T)=0.

If <5:2I->-2T is a derivation, then ô(3)s3> hence <5|3=0, and so ô is 3"
linear. A recent result of J. Ringrose [12, Theorem 2] shows that ô is

norm continuous, and hence Lemma 2.1 provides a decomposition of ô

into linear maps ôx:Ax-»-Ax such that ô(a)(x)=ôx(a(x)), a e 21, xeX,

and sup||<5.J = ||<3||. (The function ||a(*)ll is upper semicontinuous on X

for each a e 21 by [6, Lemma 9].) Each ôx is a derivation, so by Sakai's

theorem there is an element d(x) e Ax which induces ôx with ||</(*)ll =

\\ôx\\. Then de T~[AX, and ô(a)=da—ad, a e 21. The proof of 4.1 applies

to show that d can be chosen in 21.

(2) An example of A. A. Hall [8] shows that a type IIj C*-algebra with

continuous trace can have outer derivations. His example shows that this

occurs if <$L=C(X)<S>M, where X={1, 2, • • • , oo} and M is the hyperfinite

factor of type Hj.
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