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Abstract. The class of closed canonical images of the Wallman

compactification of a space is given an internal characterization, and

the class of locally compact-small spaces is introduced and shown

to play for such compactifications the same role that locally

compact spaces play for Hausdorff compactifications.

1. Introduction. Among Hausdorff spaces perhaps the next most

interesting class of spaces after the class of compact spaces is the class

of locally compact spaces. A large portion of this interest is due to the

manner in which locally compact spaces are related to their compactifi-

cations. A number of conditions stated in terms of compactifications are

known to be equivalent to local compactness.

The class of Tj-compactifications of a space never has a simple structure,

even if the space being considered is compact. Thus hypotheses restricting

the type of compactification considered are required in order to obtain

structure theorems analogous to those that hold for r^compactifications.

A class of Tj-compactifications that is well-behaved in this regard is the

class of T^^-compactifications, which are the canonical closed images

of the Wallman compactification. This class of compactifications includes

(in fact is identical with, as will be shown) cua-compactifications of

Osmatesku ([3], [4]), the class of Shanin compactifications [5], and all

T^-compactifications. The restriction seems especially natural as an ana-

logue of the situation for T2 spaces in which every compactification is a

closed canonical image of the Stone-Cech compactification.

It will be shown that the locally compact-small spaces defined below

play for 7\ spaces and T^^-compactifications the same role that locally

compact spaces play for T2 spaces and compactifications. In particular

it will be shown that the following five conditions are equivalent: the space

X is locally compact-small; the Alexandrov compactification is a ifr<ß-

compactification; there is a one-point '^'^'-compactification; there is a

projectively smallest ^^-compactification ; the space X is open in every

•^'^'-compactification; the space X is open in its Wallman compactifi-

cation. It will also be shown that every locally compact space is locally
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compact-small, and that the converse holds for T3 but not for Tt

spaces. In addition an internal characterization of ^"rf-compactifi-

cations will be given.

The term space shall mean a Tx topological space, and map means a

continuous function between spaces. The terminology and notation of

[2] will be adopted throughout.

2. Locally compact-small spaces. A space is locally compact (in

this paper) if every point has a compact neighborhood, and a space is

locally compact-small if every point has a compact-small neighborhood,

where a subset is compact-small if every closed set that it contains is

compact.

2.1. Every locally compact space is locally compact-small.

2.2. A space is locally compact-small if and only if every neighborhood

of every point contains a compact-small neighborhood.

The preceding result shows that local compact-smallness is an improve-

ment on local compactness in that the analogue of 2.2 does not hold for

local compactness.

2.3. A regular space is locally compact if and only if it is locally compact-

small.

Proof. If the space is locally compact-small then every point has a

closed compact-small neighborhood, thus clearly a compact neighbor-

hood.

2.4. Counterexample. A locally compact-small T2 space need not

be locally compact. Let X be the real line, with basic neighborhoods of

each Xt¿0 the usual Euclidean neighborhoods, and basic neighborhoods

of 0 £Zthe sets Vm={x: — \¡m<x<\¡m, x^ljn for any «}, for positive

integers m. Then every point other than 0 has a compact neighborhood,

and each Vm is a compact-small neighborhood of 0, for the subsets of

Vm that are closed in X axe closed in the usual topology on X, and thus

are compact, since the subspace topologies are the same.

Another example will be given in 2.7 below.

2.5. Every closed subspace of a locally compact-small space is locally

compact-small.

2.6. Counterexample. An open subspace of a locally compact-small

space need not be locally compact-small, for example, the rationals as a

subspace of its Alexandrov compactification.

2.7. Counterexample. A locally compact-small space need not be a

k-space. Let T be the Katëtov extension of the countable discrete space N;
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specifically, points of N are isolated points in Y, and a base for neigh-

borhoods of/7 e Y—Nis the collection {Fu{/>}}, where V<^Nbelongs to

the ultrafilter p. Certainly each point of TV c y has a compact-small

neighborhood. Now if p e Y—N and A is closed in Y with A <=N\j{p},

then A is finite, for if A is infinite then ,4 C\N is infinite and thus Ar\N

belongs to infinitely many free ultrafilters on N, each of which must

belong to the closed superset A of A C\N. Thus NKj{p} is a compact-small

neighborhood of p e Y—N, so Y is locally compact-small. To see that

Y is not a /c-space, note that every compact subset of Y is finite, so that

every subset intersects every compact subset in a closed set.

3. #^-compactifications. The basic compactification to be con-

sidered is the Wallman compactification (wX, w), the construction of

which is given in [6, 17.17]. A compactification (Z,g) of A' is a "Wß-

compactification if there is a closed map h such that hw=g; equivalently

the map g:X-*Z is a ^#-map as defined in [1] and [2]. We also define

(Z, g) to be a WO-compactification if g is a iV(9-m.a.v as defined in [2],

and a ~W-compactification if g is a #~-map as defined in [2].

3.1. If (Z,g) and ( Y, h) are Wú'-compactifications of X then there is

at most one map m such that mg=h. Such a map is closed, andm[Z—g[X]] =

Y-h[X].

Proof. Suppose mg=h=ng. There are closed maps p:wX-*Z and

q:wX-+Y such that pw=g and qw=h. Then qw=mpw=npw and since w

is an epimorphism (see [1]) it follows that q=mp=np. Since p is a closed

map whose image is dense in its codomain, it is a surjection and therefore

777=77. Since q=mp is a closed map and p is a surjection, it follows that

w is a closed map. Now if z eZ—g[X] then z=p(s) for some 5 e wX—

w[X], and m(z)=mp(s)=q(s). Since the trace filter of q(s)e Y on X

must be contained in the trace filter of s e wX—X on X, it follows that

q(s)th{X).

3.2. Every Wfi-compactification of X has cardinal bounded by 22"

Proof. Such a compactification is the image of wX, which as a strict

relatively 7\ filter extension of X has cardinal bounded as stated.

The '^"'^'-compactifications of a given space are ordered by (Z, #)_■

(Y,h) if there is 777 such that mg=h. It follows from 3.1 that this is a

partial ordering.

3.3. Let (Z, g) be a W^-compactification of X, and let A <=Z-g[X]
be a closed set. Let p:Z-+Y be the quotient map obtained by identifying

A to be a single point. Then (Y,pg) is a W'ë-compactification of X.

Proof.   The map/? is a closed map, thus/7g is a T^^-map.

As an immediate corollary there is the following result.
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3.4. If (Z, g) is a iTtf-compactification of X such that Z—g[X] has
more than one point, then there is a W*e'-compactification ( Y, h) such that

(Z,g)>(Y,h).

The preceding results lead us to consider one-point compactifications

of X. The Alexandrov compactification (aX, a) (see [6, 17.1]) is the largest

of these; the smallest is obtained by adjoining to an infinite space a single

finite complement point.

The space X is open in the compactification (Z, g) if g[X] is open in Z;

the compactification (Z, g) is compact-closed if g[K] is closed in Z when-

ever K is closed and compact in X.

3.5 The Alexandrov compactification is the unique one-point compact-

closed compactification.

3.6. Let (Z, g) be a compactification of X. There is a closed map

m:Z—>-aX such that mg=a and m[Z—g[X]]=aX—a[X] if and only if X

is open in (Z, g) and (Z, g) is compact closed.

Proof. Suppose such a closed map m exists. Then certainly X is open

in (Z,g). If A" is closed and compact in Xthen mg[K] is closed in aX. Now

m[clzg[K]]^dzmg[K]=mg[K]c:a[X];thussincem[Z-g[Z]]czaX-a[X]

it follows that c\z g[K]=g[K].

IfXis open in (Z, g) and (Z, g) is compact closed then it is readily seen

that the quotient space obtained by identifying Z—g[X] to a single point

is the Alexandrov compactification.

3.7. Remark. The conditions that m is closed and that m preserves

the outgrowth are independent, and neither can be removed.

3.8. Every ^^-compactification is a compact-closed compactification.

Proof. It is well known that (wX, w) is a compact-closed compactifi-

cation and it is clear that a closed mapping of compactifications preserves

the property.

3.9. The Alexandrov compactification is the only possible one-point

"^^-compactification.

3.10. Theorem. The following conditions are equivalent for a noncom-

pact space X.

(a) The space X is locally compact-small.

(b) The Alexandrov compactification is a 'Wß-compactification.

(c) There is a smallest "W^-compactification.

(d) There is a one-point Wtf-compactification.

(e) The space X is open in some 'W'tf-compactification.

(f) The space X is open in every iT'ë-compactification.

(g) The space X is open in its Wallman compactification.
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Proof. Trivially (b) implies (e), and it is readily shown from 3.1

that (e), (f), and (g) are equivalent. Using 3.6 it can be seen that (f)

implies (c), and from 3.4 it follows that (c) implies (d). According to

3.9, (d) is equivalent to (b). Thus it remains only to show that (a) and (g)

are equivalent.

If X is locally compact small and x e X, choose a compact small

neighborhood V of x. Clearly V<zwX-c\wX(X-V). Now if pewX-

c\wX(X— V) there is a closed subset B of X such that p e c\wX B and

c\wX BnclwX(X— V) = 0. It follows that Pc V and thus B is compact,

so clwX P=Pand p e X. Now X-c\aX(X- V)= V; thus peV. Therefore

V=wX—clwX(X— V), so Fis open in wX.

If X is open in wX and x e X, choose a closed set B <= X so that x £ cl^- B

and clwA- B^> wX—X. Now if A is closed in X and A C\B= 0 it follows

that c\wX A C\e\wX B=0 and thus cl„x A <= X, so A =clU)_x- A and A is com-

pact. Therefore the set V=X— B is a compact small neighborhood of x.

3.11. Remark. There are one-point compactifications with weaker

topology than that of (aX, a) ; these are all images of (wX, w) whenever

(aX, a) is such an image, but (aX, a) will be the only ^^-compactifi-

cation. When X satisfies appropriate conditions such a smaller com-

pactification (Z,g) may in fact be a ^C-compactification ; that is, the

embedding g:X-+Z may be a iTCz-map as defined in [2]. Note also that

whenever (aX, a) is a '¡^'^-compactification (that is, the map a:X-^-aX

is a W-map as defined in [2]) then X is open in wX and thus (aX, a) is a

^^-compactification.

4. An internal characterization. It will be shown that the "Wé-

compactifications of a space are those compactifications (Z, g) satisfying

the following condition.

Wtf. If C and D are closed in Z and disjoint then there is a closed

Pc^with C^clg[B]<=Z— D, suchthat if £ is closed in Zand disjoint

from B then cl g[E]nC= 0.

Note that this condition is closely related to the definition given in

[2] of a iTtP-map. This is to be expected, since ^^-compactifications

are #"C-compactifications.

4.1. Theorem.    Every Wé'-compactification satisfies condition W&.

Proof. Let h : wX-*Z be the closed extension of g : X->Z. Let C, D<^Z

be closed and disjoint. Then hr[C] and k~[D] are closed and disjoint

in wX, so by [2, 2.9] there is a closed B c X with hr [C] c cl,,,^ wx[B] and

c]wX wx [B] r\h- [D] = 0. Then

C - h[hr[C]] c h[c\wX wx[B)] - cl* A^[P] = clz£[P]

(since h is a closed onto map) and c\zg[B]=g[clwX wx[B]]dD=0.
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If £ is closed in X and disjoint from B then cl,,, Y[£]ncI„,A- wx[B]=0,

thus clwX[E]ng-[D] = 0, so clzg[E]r\D=g[c\wX wx[£]]n£>= 0.

We now turn our attention to the converse. That is, we show that every

compactification that satisfies condition H/'~c€ is a ^^'-compactification.

4.2. Every compactification that satisfies condition "WH is a strict

topological extension.

Proof. Let zeZ and let V be an open neighborhood of z. Taking

C=Z— V and z—D and choosing B as in condition IVV, it follows that

zeZ-dzg[B]<=V.

4.3. Every compactification that satisfies condition Wtf is a WC-

compactification.

Proof. We must show that g:X-+Z is a ^0-map. Let v be an open

cover of Z. For each zeZ choose Vev such that zeV, and using

condition iV% choose a closed subset Az of X with z eZ—c\zg[Az] <= V,

such that if £cj is closed and disjoint from Az then clz £c v. Since Z

is compact, there is a finite collection /ix, • • • , An of the A, such that

{Z—c\z g[AA} covers Z. In particular fi = {X—A¡} covers X. It now

follows that fi<gv. Thus g is a "^(P-map.

The following condition on compactifications is useful in the present

and many other contexts.

3'cê. \î A<=-Xis closed and z ec\zg[A] then there is a closed filter on

X that contains A and has z as its unique cluster point in Z.

4.4. Every compactification that satisfies W% satisfies ÍF'G.

Proof. Since zec\zg[A], then the principal filter generated by A

is a closed filter on X that contains A and has z as cluster point in Z.

Thus there exists a closed filter X on A" that contains /I, has cluster point

zeZ, and is maximal with respect to these two properties. We shall

show that X has no cluster point in Z other than z. Suppose y eZ with

y^z. Using "Wtí there is a closed .BcA'such that z ec\zg[B]^Z— y

with the property that if C<=X is closed with Cnl?=0 then z £ clzg[C].

It follows immediately that B intersects every member of X, and since

z e c\z B then B e X. Thus y is not a cluster point of X.

The next condition is due to Osmatesku [3], who defines wa.-com-

pactifications as those ^-compactifications that satisfy the condition.

Jf"^. If A <=X is closed and k^Z is compact with g[A] ̂ Kcc\g[A]

then A"is closed.

4.5. Every compactification that satisfies Sffi (thus those that satisfy

iT<g) satisfies iï<€.
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Proof. Let zeclg[A]. Then by J^ there is a closed filter X on X

that contains A and has z as its unique cluster point in Z. Since k is

compact, g(K) must have a cluster point in k, and thus z e K.

The following result now completes the proof of the converse of 4.1.

It also establishes the equivalence of ^^-compactifications with cua-

compactifications mentioned in the introduction.

4.6. Every "W-compactification (hence every iV(9-compactification)

that satisfies CtCll is a if^'-compactification.

Proof. Let h:wX-*Z with hwx=g. If A<^X is closed then

A<^h[dwX wx[A]]<=c\zg[A]. Since g[clwX wx[A]] is compact then by

Jftf it is closed, hence equal to c\zg[A]. Now let Pc:Z be closed and

set ¿%]}={A<=X:A is closed and B<=dwXwx[A]}. Since cl^jf wx[A]n

c\wX wx[C]=c\wX wx[ACxC] (by [2, 2.4]) it follows that 3&B is a closed

filter base on X. Since wX is a strict extension of X, it follows that B

is precisely equal to the set of cluster points in wX of 3§B. Now clearly

h[B] is contained in the closed set D of cluster points of the filterbase

h(@B). Now if zeD then (since h[dwX wx[A]]=dzg[A]) hr(z)Cx

dwXwx[A]=0 for each Ae38B, and thus 0BB has a cluster point

pehr(z). It follows that z=h(p) e h[B]. We have shown that h[B]=D,

thus A is a closed map.

The following two results have now been established.

4.7. Theorem. Every compactification that satisfies Hr<€ is a W%-

compactification.

4.8. Theorem. A compactification satisfies W% if and only if it is a

ojx-compactification.

4.9. Remark. Osmatesku gives a condition in [4], stated in terms of

proximités, that is closely related to W<ë. The condition (modified

slightly) is that if F,G<=X, with dz g[F]ndz g[G] = 0, then there is

B c X such that c\z g [F] c dz g [B], dz g [G] ndz g [B] = 0, and if £ c X is

closed with dzg[Br\E] r\dzg[F] = 0 then dz g[E]rxdz g[F]=0 .Then

he shows that the wa-compactifications are the strict compactifications

satisfying this condition. Note that Osmatesku's condition trivially

implies ours for C and D of the form cl^^[G], dzg[F], since if BC\E=0

then certainly clz g [B n E] t~\dz g [F] = 0, so clz g [£] Cxdz g [F] = 0. Also

note that our condition may be restricted to sets C and D of this special

form if we add the condition that (Z, g) is a strict extension.

One additional condition on compactifications is of special interest.

<$&. There is a base @ for closed sets in X such that cl g(SS)={d g[B] :

Be38} is a base for closed sets in Z, and clg[P]nclg[C]=clg[PnC]

for B,Ce@.
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4.10. Condition ̂ SS implies #"#.

Proof. Let C and D be disjoint closed subsets of Z. Since Z is compact

and cl g(S§) is a base for closed sets in Z then there is B e 38 with C c

cl g [B] and cl g [B] n D = 0. Now if £ c ^ is closed then cl g [E] r\clg [B]=

cl g[E r\B] (since B e @, cl g(3S) is a base forZ, and cl g[A r\B]=cl g[A] n

clg[.B] for all ,4 e J1). Thus if £n£=0 then cl£[£]nclg[Jß] = 0, so

cl g[E]r\C=0.
A Shanin compactification (see [5]) is a compactification for which

#á? is satisfied by a base á? that contains the empty set and is closed

under finite union. The following result is thus a special case of 4.10.

4.11. Theorem. Every Shanin compactification is a Wë-compactifi-

cation.
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