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ON TWO THEOREMS OF PALEY1

N.  M. RIVIERE AND Y. SAGHER

Abstract. A strengthening of Paley's theorem for the Fourier

coefficients of an L" function is presented. The result is then applied

to prove strong versions of recent results of P. L. Duren, and of

J. H. Hedlund on (£», L") multipliers.

Introduction. Recently J. H. Hedlund [2] has proved the following

theorem: If{X(n)} satisfies: &up0&kC2.neBt l¿(«)lí)1/s<00, where

Bk = {0},       k = 0,

= {//eZ|2fc-1 = n<2*},

then {X(n)} is an (Hp, H") multiplier, where l^/>^2, q=2pj(2-p).

This result implies a sufficient condition given by Hardy and Littlewood

(see [2, Proposition 5]). The result for/»=2 is of course trivial, and in the

case p—l is due to Hardy and Littlewood. Actually the condition for

/>= 1 is necessary as well as sufficient, as was proved by Stein and Zygmund

in [7].

Using Hedlund's result, Kellog [4] has proved the following improve-

ment of the Hausdorff-Young theorem: Ifl<p-S.2,feV, then:

(oo     / \2/jA1/2

2  2 i/(»)n    ^ c» i/i*-
*=-oo W.Bt '        '

where Bk=-B_kfor k<0 and l//»+l//»'=l. If

(00      / \2/p\l/2

I  I ic.r) ) < »o,

thenfe IP exists so that

Cn =/(«)   and   ¡fh'' = ¿J J ( 2 ICJ"
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Since however the Hausdorff-Young theorem is not the best one can

say about the Fourier coefficients of a function, it is of interest to compare

Kellog's theorem with Paley's: (2f° [/(«)*]J,wp-2)1/í'^Cí>||/||i), where

{/(«)*} is the nonincreasing rearrangement of {\f(n)\}. If one considers

Fourier coefficients with respect to a general uniformly bounded ortho-

normal system, Paley's theorem is a best possible one (see [8]). However,

in the case of the trigonometric system, we see that Kellog's result is not

comparable to Paley's: If {/(«)} are lacunary, Kellog's result is better,

while if {/(/i)} vanishes except on a binary block Bk, Paley's theorem is

better.

In this note we prove a theorem which is an improvement of both

Kellog's and Paley's theorems. The proof is surprisingly simple. Using

this result we in turn improve Hedlund's multiplier theorem, as well as a

multiplier theorem of Duren.

To keep the presentation simple we restrict ourselves to periodic

functions. The extensions to jR" are straightforward.

L(p,q) spaces are defined as follows: (X,~L,p) is a <r-finite measure

space,/a measurable function,/* the nonincreasing rearrangement off.

Define

a» At\1/Q[t^ntW-J   ,      0<p<œ,      0<9<oo,

= sup tlhf*(t), 0 < p = oo,       q = co.
o<<

L(p,q) = {f\\\f\\tQ<co}.

For a survey of the theory of L(p,q) spaces and their interpolation

properties, see for example [3], [6]. We mention only the facts most

important in the present context.

(a) qx<.q2-^-L(p,q)^-L(p,q2), and the inclusion is strict, unless

(X, 2, p) has only finitely many disjoint sets of positive measure.

(b) L(p,p)=U>.
(c) For sequences {an}, considered as functions over the integers,

with measure 1 on each integer,
/ oo \l/a

where {a*} is the nonincreasing rearrangement of {|an|}.

(d) (Holder's inequality)

11/gllL = ̂ Hl/CJgllU

where \¡p=\¡p0+\¡px; \¡q=\¡q0+\lqx.
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We next quote two theorems :

Theorem I (Paley). If {q>„} is a uniformly bounded orthonormal

system, f(n) the Fourier coefficients off with respect to this system, 1 </»<2,

0<tf^oo,

II{/(»)}II,*-., Ú c,.g i/ik

If{Cn} e L(p, q), thenfe L(p , q) exists so that Cn—f(n), and

l/l¿.á cp.a ||{c„}||*„.

See [3], [6]. The case q=p is the classical theorem of Paley mentioned

in the introduction.

Theorem II (Littlewood-Paley). f~Z-xf(n)einr,fe W, l</»<co.

Denote Afc(x)=2„£Bt/(n)einI. Then

\1/2||

C, ||/||£' =

See [5], [8].

(00 \1,

2ia*«i2
— QO '

^ c, n/iii*.

Theorem III.   Let f~~Z?xf(n)einx, fe L", l<p£2. Then, using the

above notation,
(oo \l/2

2 llA«;?,)  ^ cv \\f\\L>.

Conversely, if 2^/»<oo and (It0!-» l|Âfc(«)[|*?P)1/2< oo, /Aere exw/j

/e L» ímc/z thatf-lk^-v Œ*Â(/7)e'»*).

Proof.   If 1 </»^2,

(OO \1/2||

2i^wi2
/ r'..   —oo '      l'L

(oo \l/2        /    oo \l/2

2 li^wui*  ^  2 ii4(«)iip*-2J •
¡fc=-00 ' \fc=-oo '

Of course Âk(n)=f(n) if « e -Bt, Àt(n)=0 otherwise.

For the other part, note

(oo \1/2||

2iA*wn
/      Ut"—oo '       "Z.

(oo \l/2        / oo \l/2

2l|Afc(x)||M <  2llÂ»ll*-!,   .
—oo ' ^—oo '

(To be precise, given a sequence {Cn} with (I"J{CB}n62iJi;?p)l/2<co,

we define fN(x)—y^n¡s v Cneinx, apply the norm inequality above, and

use completeness of LP.)
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A moment's reflection shows that the result above is an improvement

of both Kellog's theorem and of Paley's. If one uses Hausdorff-Young in

conjunction with Theorem III, one gets precisely Kellog's theorem.

To show the improvements of the multiplier theorems of Hedlund and

Kellog, we introduce the following notation

(oo \l/r

2Hc«wr< .
— 00 '

V(l™) = {{C„} I KOIrtr«, < co}.

If now l</?=2<?<oo, \¡r=\lp-\¡q, A={X(n)} el*(lT-«>), we have

«««)/(«) W*.« = llM»)/(»)}».sJ*.*
= ew \\{X(n)UBk\\r.x \\{f(n)}neBk\\p..P.

Hence

Theorem IV. If{X(n)}e/^r;00), \¡r= \\p-\\q, 1 </>=2^<oo, then

A(f) defined as (A/) (n)=X(n)f(n) is a bounded mapping from V into L"

Proof.

IIA/IU« Ú CQ IWb)Aii)}IW''i

= c9M iiw«)}«,»«'-») ii{/(»)}n«v")

^ Cp,5 || {A(n)} || ,»„'.-,11/Hx».

The following theorem of Duren [1] is an easy consequence of Theorem IV.

If Xn=0(n'*) where a=l//?-l/?, l</;=2<9. Then {An} is an (L", L»)
multiplier. It suffices to observe that if Xn=0(n~'1), we have A*_C//ia,

then {X„} el(\jx, oo), and certainly {An} e/00(/1/o[,oc') as required by our

multiplier theorem. Clearly we can prove a stronger version of Duren's

theorem: If \Xn\^C(n-2k)-" where 2*<n=2«:+1 and C is uniform in k,

then {Xn} is an (W, L") multiplier.
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