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MUTUAL EXISTENCE OF PRODUCT INTEGRALS

JON C. HELTON

Abstract. Definitions and integrals are of the subdivision-

refinement type, and functions are from R x R to R, where R rep-

resents the real numbers. Let OM° be the class of functions G such

thatJT0 +G> «istsfor a<x<y<b and f* 11 +G-TJ(1 +OI =0.
Let OP" be the class of functions G such that \YJa=i(.l+G,)\ is
bounded for refinements {*„}£=„ of a suitable subdivision of [a, b].

If Fand G are functions from RxRtoR such that Fe OP" on [a, b],

limi.v—v+ F(x, y) and limItt,-.p- F(x, y) exist and are zero for p e

[a, b], each of lima;—»+ F(p, x), limue—p- F(x,p), lim¡i;_j>+ G(p, x)

and limz—jj- G(x,p) exist for pe [a, b], and G has bounded vari-

ation on [a, b], then any two of the following statements imply the

other: (1) F+GeOM° on [a, b], (2) Fe OM° on [a, b], and (3)
GetWon [a, b].

All integrals and definitions are of the subdivision-refinement type, and

functions are from R x R to R, where R represents the set of real numbers.

Furthermore, functions are assumed to be defined only for elements {x, y}

of RxR such that x<y. If D={xQ}Q1=0 is a subdivision of [a,b], then

D(I)={[xg_x, x„]}ï=x and Ga=G(X<1_x, x,). Further, {x^Ä represents a

subdivision of the interval [xQ_x, x,] and G8r=G(Arcr_1, x^). The statement

that J"* G exists means there exists a number L such that, if e>0, then there

exists a subdivision D of [a, ¿»] such that if J is a refinement of D, then

L~2G <£.

The statement that aL~[b (l+G) exists means there exists a number L such

that, if £>0, then there exists a subdivision D of [a, ¿»] such that if J is a

refinement of D, then

L - E[ (1 + G) < e.

Further, G e OA° on [a, ¿>] only if _[„ G exists and fab |G-J G|=0, and
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GeOM°  on   [a, b]  only  if JPO+G)  exists   for a^x<y^b and

iall+G-n(l+G)l=0.
The statements that G is bounded, G e OP°, G eOQ° and G g OB0

on [a, b] mean there exist a subdivision D of [a, b] and positive numbers

B and /? such that if /={xa}*=0 is a refinement of D, then

(1) |G(«)|<Ä for «6/(7),

(2) inU(l+G8)|<Ffor l<r<i<«,
(3) mí-, (\+GQ)\>ßiov l=r^í<«, and

(4) 1jw\G\<B,
respectively.

If G is a function, then G e Si on [a, è] only if lim^,,.^ G(x, j) and

limj.„_p- G(x, y) exist and are zero for/? g [a, b], and G G S2 on [c, ¿>] only

iflimx^j,+ G(p, x)andlimI_J)- G(x,p) exist for/? g [a, ¿>]. Further, G G OL°

on [a, b] only if linvt-J,+ G(x, y), lim,.«-»»- G(x,y), lim^t G(p, x) and

lim^j,- G(x, />) exist for p e [a, b]. See B. W. Helton [2] and J. S. Mac-

Nerney [7] for additional details.

Lemma 1.1. If F and G are functions from RxRto R such that F e OP0

on [a, b] and G e OB° on [a, b], then F+G e OP° on [a, b].

Lemma 1.1 is part of a previous result by the author [5, Theorem 1].

Lemma 1.2. If G is a function from RxR to R such that j"£ G exists,

then G e OA° on [a, b].

Lemma 1.2 is due to A. Kolmogoroff [6, p. 669]. The reader is also

referred to results by W. D. L. Appling [1, Theorems 1, 2, p. 155] and B.

W. Helton [2, Theorem 4.1, p. 304].

Lemma 1.3. If G is a function from RxR to R such that G e OB° on

[a, b], then the following statements are equivalent:

(1) G G OM° on [a, b],

(2) G g OA° on [a, b], and
(3) j"* G exists.

B. W. Helton [2, Theorem 3.4, p. 301] shows that (1) and (2) are

equivalent. Further, by Lemma 1.2, (2) and (3) are equivalent.

Lemma 1.4. If F and G are fund ions from RxRtoR such that F e OM°,

OP°andS1nS2on [a, b]andG e OM°andOB°on [a, b],thenF+G e OM°

on [a, b].

Lemma 1.4 is proved in a previous paper by the author [5, Theorem 2].

In the original version [5, Theorem 2] the theorem is stated with the

requirement that f£ G exist rather than G G OM° on [a, b]. However,

Lemma 1.3 establishes the equivalence of the two forms.
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Lemma 1.5.   If Eis a finite set of points from [a, b] and F, G and H are

functions from RxRtoR such that

(1) GeOB°andS2on [a,b],

(2) He OP0 and SxnS2 on [a, b],

(3) H+Ge OM° on [a, b], and

(4) FeS2on [a, b] and if a^x<y^b, then F(x,y)=H(x,y) ifx$E
and y $ E,

then F+Ge OM° on [a, b].

Proof. Lemma 1.1 establishes that H+GeOP° on [a,b]. Further,

H+G e Sx nS2 on [a, b]. Let H' be the function defined on [a, b] such that

if a_x<v=Z>, then

(1) H'(x, v)=0 if x $ E and y £ E, and

(2) H'(x, y)=F(x, y)-H(x, y) if x e E or y e E.

Thus, H' e OM° and OB° on [a, b]. Therefore, by Lemma 1.4, H+G+H'

is in OM° on [a, b]. Hence, since H+G+H'=F+G on [a, b], F+Ge

OM° on [a, b].

Lemma 1.6. If G is a bounded function from RxR to R such that

J~P 0 + G) exists and is not zero, then G e OP0 and OQ° on [a, b].

Lemma 1.6 is a special case of a previous result by the author

[4, Theorem 2].

Lemma 1.7. If G is a bounded function from RxR to R such that G e

OM° on [a, b] and 1+G is bounded away from zero on [a, b], then G e OP°

and OQf on [a, b].

Proof. Since G e OM° on [a, b] and 1+G is bounded away from zero

on [a, b], JP (1+G) exists and is not zero. Therefore, it follows from

Lemma 1.6 that G e OP° and 00° on [a, b].

Lemma 1.8. If G is a function from RxR to R such that G e 0B° on

[a, b] and 1+G is bounded away from zero on [a, b], then G e OQ° on [a, b\.

Lemma 1.8 is a special case of a previous result by the author

[5, Theorem 3].

Lemma 1.9. If G is a bounded function from RxR to R such that

oO" (1 + G) exists and is not zero, then G e 0M° on [a, b], .

Lemma 1.9 follows from Lemma 1.6 and a result of B. W. Helton

[2, Theorem 4.2, p. 305].

Lemma 1.10. If G is a function from RxR to R such that G e OB° and
S2 on [a, b] andx\~[v (1+G) exists for a^x<y<b, then G e OM° on [a, b].
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Proof. Let e>0. Since G g OB° on [a, b], there exist a subdivision

D0 of [a, b] and a number B> 1 such that if {xj*=0 is a refinement of D0

and 1 ̂ r^s^n, then

fl (1 + GÙ<B.

There exists a subdivision E={wQYQ=0 of [a, b] such that if l^q^t and

wi_1<x<_y<w(7, then \G(x,y)\<\. Further, there exist sequences {w„}£=i

and {f„}J=i such that
(1) wB_1<M,<i;,<wi,

(2) if w„_1<x<>'^«<„ then

IGiw,-!, x) - G(w,_1, y)\ < £(8î)-\

(3) if wi_1<x<wa and / is a subdivision of [x, «J, then

2|G|<c-(8B30-\
JU)

(4) if «<,^x<j<w'<„ then

|G(x, w8) - Giy, w,)|< ^Sl)-1,

and

(5) if t>„<x<tv(I and J is a subdivision of [va, x], then

^IGKc-tSB3,)-1.

We know from the hypothesis that ^YV' (1+G) exists for \^q^t.

Further, it follows from Lemma 1.8 that each of these integrals is nonzero.

Thus, Lemma 1.9 implies that G g OM° on [ua, vQ]. Hence, for l^f j£r,

there exists a subdivision D„ of [ua, va] such that if/={xj"=0 is a refinement

of D„ and {xtf}?io is a subdivision of [*<_!, xj, then

2
n(i)

i + g* - Fl a + g„)
3 = 1

< e(8i)-

Let D denote the subdivision (J«=o D„yJE of [a, b]. Suppose {x,}"=0 is a

refinement of D. Let {xu,(i)}'=0 be the subsequence of {xj"=0 such that

xwH)=Wi. Further, let {xu(i)}'=1 and {xtU)}*.i be the subsequences of

{xJJLo such that xtt(i)="¿ and x^0—»«. Let F(ç), £/(?) and K(^) denote
i02S(Ärt. {0?A-i)+i and {i}riîîi)+i, respectively. Further, let C/, F, £/'(?)
and V'(q) denote {w(i)+l}U, M0}U ÍO*ií<^i)+2 and WAS»,
respectively. Finally, let S(<7) and S'(<?) represent U(q)W(q) and U'(q)\J

V'(q), respectively.
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For l^i'^/7, there exists a subdivision {xi;}"!o of [Xi_x, xt] such that

n«)

n d + gu) - Xi_x\« d + o

Let Hi represent \+Gt-T\¡!íl 0+G„). Thus,

< e(U)-\

2 i + G.-^n-d + c) <2m + K8«)-1]«Z, '"*
i=l

s= 2 Im + 2 2 m + i
8 = 1 !SS(<7)

I

8=1 i6T(<l)

< 2 2 \"i\ +W80-1]' +1
«=l i<=S«r) »

- 2 i*«i + 22 w +
ief/UF e=lt&S'<8)

= 2 \"i\

+ 2 2 u + Gj-ii+^pna + cJ
8=l¡eS'<«> ^ }=1 I-t=1 J

["''' "111
rid+G,,)

s=j+l -I ̂  I

+

nU)

= 2 i^i+ 2 2   ic¿i + b22ig,,i
íeCJUF «=l íes (a) 3=1

<    2    Itfil + K8530-1]i + B*[e(SB*t)-i]t +
!£l/uF

< 2 WI + ;
n«)

<gi(i + g¿) - (i + Gö)i +2H + e«i -i + n (i + gu)
ieV ieU 3=2

+2K1 + C0-(l + G^o)!

+2n+GiMi)\ -i+TÍ(i + g„)
ieF 3=1

^2iG<-c<ii + ß2 -1+1 + 2 n(i + Gfr)
¿6Í7 íe!7

2
n(i) r 3—1

3=2 l-r=2

[G«l

n(i)

n (i + gís)
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n(i)-l rM

[G„]+ 2 IG, - Gi¡nU)\ + B2    -1 + Í1 +   2    [fl (1 + Gir)
ieV izV \ ;=1   i- r=l

[nd'ï—1 -i \

n a+Gj
S=3+l J '

n«)

<[E(8í)-1]í + B322|G¿3|

+f

+ K8írljt + flí2"l"1|G«i+f

< B3[£(8B30_1]r + B3[e(8B3í)_1]í + ~
4

= £.

Therefore, G g OM° on [a, b\.

Lemma 1.10 is not true if only JfJ* (1+G) is required to exist rather

than XTJ* (1+G) for a^x<y^b. For example, consider the function G

defined on [0, 1] such that, for 0^x<j^l,

(1) G(0,x)=-1,

(2) G(x,y)=y—x if x#0 and_y is irrational, and

(3) G(x, y)=x—y if x#0 and y is rational.

Thus, G g OB° and S2 on [a, b] and Jf (1+G) exists and is zero. How-

ever, XYY (1+G) does not exist for a^x<y^b, and thus, G £ OM° on

[a,b].

Lemma 1.11. If Hand G are functions from RxR to Rsuch that H e OL°

on [a, b], G e OB° on [a, b] and either G e OM° on [a, b] or G e OA° on

[a, b], then HG e OM° and OA° on [a, b].

Lemma 1.11 is a modification of a result of B. W. Helton [3, Theorem 2,

p. 494] obtained by using Lemma 1.3.

Theorem 1. If F and G are functions from RxR to R such that F e OP0

and S1r\S2 on [a, b] and G e OB° and S2 on [a, b], then any two of the

following statements imply the other:

(1) F+GeOM° on [a,b],

(2) FeOM° on [a,b],and

(3) G G OM° on [a, b].

Proof (1, 2-*3). There exists a subdivision F={w,}'=0 of [a, b] such

that if IJjfSii and wi_1<x<j<wi, then |F(x,^)|<i Let F'(x,y)=

F(x,y) if x $ E and y $ E, and let F'(x,y)=0 if x e E or y e E. Thus,

(1+F')-1 is in OL° on [a,b]. Further, it follows from Lemma 1.5 that

F'+G e OM° on [a, b] and F' G OM° on [a, b]. Hence, since F' g OM° on
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[a,b], Lemma  1.7 implies that F' e OQ° on  [a, b). Also, note that

G(l+F'Yl is in OB° and OP0 on [a, b].

We now establish thatJl1' [l+G(l+f")_1] exists by using the Cauchy

criterion for product integrals, where a_;c<j^¿». Let e>0. There exist

a subdivision D of [x, y] and positive numbers B and ß such that if J and

K are refinements of D, then

(0 \Yljin(\+F')\>ß,
(2) \TIjmV+G(l+F')-i]\<B,
o) irim> (i+n-rLn/) o+nK/fei^r1, and
(4) lEL/m (l+^'+G)-nA'<7) (l+r+G)|</S£/2.

Suppose y and K are refinements of D. Thus,

2
n(i+F'+G)-n(i+f'+G)
JU) KU)

inci + nliilfi + Gii + FT1])

-ínci+nlínti+Gíi+FT1]]
*-KU) "KU) '

n a+f') n ti+G(i+ft1] - n [i+cd+ft1]
JU) JU) KU)

n (i+n - n (i+n n [i+ca+ft1]
JU) KU) KU)

>ß n [i+c(i+ft1] - n [i+c(i+ft1]

and hence,

KU)

- [ße(2B)-1]B,

n [i+G(i+ft1] - n [i+cd+ft1]
JU) KU)

Therefore, the desired product integral exists.

Now, since J"]" [l+GO+F')"1] exists for a^x<y<b and G(l+F')_1

is in 05° on [a, b], it follows from Lemma 1.10 that G(l +F')_1 is in OM°

on [a, b]. Hence, since 1+F' is in OL°, Lemma 1.11 implies that G e OM°

on [a, b].

Proof (2, 3-»l). This result is stated as Lemma 1.4 and is proved in a

previous paper by the author [5, Theorem 2].

Proof ( 1, 3^-2). It follows from Lemma 1.1 that F+Ge OP° on [a, b].

Further, F+GeSxf\S2 on [a,b], and -GeOB0 and OM° on [a,ft].

Therefore, Lemma 1.4 implies that F=F+G—G is in OM° on [a, ft].



1974] mutual existence of product integrals 103

Bibliography

1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat.

Palermo (2) 11 (1962), 154-156. MR 27 #4040.

2. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966),

297-322. MR 32 #6167.
3. -, A product integral representation for a Gronwall inequality, Proc. Amer.

Math. Soc. 23 (1969), 493-500. MR 40 #1562. '
4. J. C. Helton, Product integrals, bounds and inverses, Texas J. Sei. (to appear).

5. -, Bounds for products of interval functions. Pacific J. Math, (to appear).

6. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann. 103 (1930),
654-696.

7. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148-

173. MR 26 #1726.

Department of  Mathematics, Arizona State University, Tempe,  Arizona

85281


