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MUTUAL EXISTENCE OF PRODUCT INTEGRALS

JON C. HELTON

ABSTRACT. Definitions and integrals are of the subdivision-
refinement type, and functions are from R X R to R, where R rep-
resents the real numbers. Let OM® be the class of functions G such
that,] [*(1+6) existsfor a<x<y=<b and J‘: [1+G-TJ(1+G)|=0.
Let OP° be the class of functions G such that |[T;_,(1+Go)| is
bounded for refinements {x.}s_q of a suitable subdivision of [a, b].
If Fand G are functions from R x R to R such that FE€ OP°on {a, 8],
limg,y—p+ F(x, y) and limz,y—.p- F(x, y) exist and are zero for p€
[a, B], each of limz—.p+ F(p, x), limg—p- F(x, p), limz—p+ G(p, x)
and limz—.p- G(x, p) exist for p € [a, b], and G has bounded vari-
ation on [a, b}, then any two of the following statements imply the
other: (1) F+G€ OM° on [a, b], (2) FEOM" on [a, b], and (3)
G € OM° on [a, b].

All integrals and definitions are of the subdivision-refinement type, and
functions are from R X R to R, where R represents the set of real numbers.
Furthermore, functions are assumed to be defined only for elements {x, y}
of Rx R such that x<y. If D={x,}q0 is a subdivision of [a, b], then
D(D)={[%,=1, X}y and G,=G(x,_,, Xx,). Further, {x,}r% represents a
subdivision of the interval [x,_,, x,] and G,,=G(X,.,.—1, X¢). The statement
that j’,',’ G exists means there exists a number L such that, if ¢>0, then there

exists a subdivision D of [a, b] such that if J is a refinement of D, then

‘L - > Gl e
J)

The statement that ,] ]* (14 G) exists means there exists a number L such
that, if £>0, then there exists a subdivision D of [a, b] such that if J is a
refinement of D, then

’L——H(1+G) <e.

J(

Further, G € 04° on [g, b] only if f; G exists and f;|G—f G|=0, and
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GeOM® on [a,b] only if J]'(14G) exists for a=<x<y=<b and
f2114+G—T] (14G)|=0.

The statements that G is bounded, G € OP°, G € 0Q° and G € OB°
on [a, b] mean there exist a subdivision D of [a, b] and positive numbers
B and B such that if J={x,},_, is a refinement of D, then

(1) |G(w)|< B for u € J(I),

@ [ Te=r 1+G)I<B for 1Sr=s=n,

3) I[Li=r (1+G,)|>p for 1=r=s=n, and

(4 25w |GI<B,
respectively.

If G is a function, then G € S, on [a, b] only if lim, ,_+ G(x, y) and
lim, , - G(x, y)existand are zero for p € [a, b], and G € S, on [a, b] only
iflim,_ ,+ G(p, x)and lim,_, .- G(x, p) exist for p € [a, b]. Further, G € OL°
on [a, b] only if lim, ,_,+ G(x, y), lim, ;.- G(x, y), lim,+ G(p, x) and
lim,, ,- G(x, p) exist for p € [a, b]. See B. W. Helton [2] and J. S. Mac-
Nerney [7] for additional details.

LemMA 1.1. IfF and G are functions from RX R to R such that F € OP°
on [a, b] and G € OB° on [a, b], then F4+G € OP° on [a, b).

Lemma 1.1 is part of a previous result by the author [5, Theorem 1].

LEMMA 1.2. If G is a function from RX R to R such that {: G exists,
then G € OA° on [a, b).

Lemma 1.2 is due to A. Kolmogoroff [6, p. 669]. The reader is also
referred to results by W. D. L. Appling [1, Theorems 1, 2, p. 155] and B.
W. Helton [2, Theorem 4.1, p. 304].

LemMA 1.3. If G is a function from RX R to R such that G € OB° on
[a, b], then the following statements are equivalent:

(1) Ge OM°® on [a, b],

(2) Ge 0OA° on [a, b], and

() f? G exists.

B. W. Helton [2, Theorem 3.4, p. 301] shows that (1) and (2) are
equivalent. Further, by Lemma 1.2, (2) and (3) are equivalent.

LemMa 1.4.  If Fand G are functions from R X R to R such that F€ OM°,
OP°and S,NS,on [a, b)and G € OM° and OB° on [a, b], then F+G € OM°
on [a, b].

Lemma 1.4 is proved in a previous paper by the author [S, Theorem 2].
In the original version [5, Theorem 2] the theorem is stated with the
requirement that j"a" G exist rather than G € OM° on [a, b]. However,
Lemma 1.3 establishes the equivalence of the two forms.
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LemMA L.5. If E is a finite set of points from [a, b] and F, G and H are
functions from RX R to R such that

(1) Ge OB° and S, on [a, b),

(2) H € OP° and S,NS, on [a, b],

(3) H+G € OM°® on [a, b, and

(4) Fe S, on [a,b] and if a=x<y=b, then F(x,y)=H(x,y) if x¢ E

andy ¢ E,

then F+G € OM° on |[a, b].

PrOOF. Lemma 1.1 establishes that H+G € OP° on [a, b]. Further,
H+G € S,NS, on [a, b]. Let H' be the function defined on [a, b] such that
if aSx<y=b, then

(1) H'(x,y)=0if x¢ Eand y ¢ E, and

(2) H'(x,y)=F(x,y)—H(x,y)ifxe Eor y e E.

Thus, H' € OM° and OB° on [a, b]. Therefore, by Lemma 1.4, H+G+H’
is in OM® on [a, b]. Hence, since H+G+H'=F+G on [a,b], F+G €
OM?° on [a, b).

LemMA 1.6. If G is a bounded function from RXR to R such that
ol [° (14-G) exists and is not zero, then G € OP° and OQ° on [a, b].

Lemma 1.6 is a special case of a previous result by the author
[4, Theorem 2].

Lemma 1.7. If G is a bounded function from RX R to R such that G €
OM?° on [a, b) and 1+ G is bounded away from zero on [a, b), then G € OP°
and 0Q° on |[a, b).

Proor. Since G € OM° on [a, b] and 14G is bounded away from zero
on [a, b], JI* (1+G) exists and is not zero. Therefore, it follows from
Lemma 1.6 that G € OP° and OQ° on [a, b].

Lemma 1.8. If G is a function from RX R to R such that G € OB° on
[a, bl and 1 4G is bounded away from zero on [a, b], then G € OQ° on [a, b].

Lemma 1.8 is a special case of a previous result by the author
[S, Theorem 3].

LemMA 1.9. If G is a bounded function from RXR to R such that
ol 1° (14+G) exists and is not zero, then G € OM° on [a, b]. .

Lemma 1.9 follows from Lemma 1.6 and a result of B. W. Helton
[2, Theorem 4.2, p. 305].

LemMA 1.10. If G is a function from RX R to R such that G € OB° and
Sy on [a, bl and ,JT* (14G) exists for aS<x<y=b, then G € OM° on [a, b].
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PrROOF. Let ¢>0. Since G € OB° on [a, b], there exist a subdivision
D, of [a, b] and a number B>1 such that if {x;}7, is a refinement of D,
and 1=r=<s=<n, then

IH 1+ G,.)) <B.
There exists a subdivision E={w,}._, of [a, b] such that if | =q=t and
We_1 <x<y<w,, then |G(x, y)|<3}. Further, there exist sequences {u}¢,
and {v,}{-, such that

(1) W1 <u<v,< Wy,

2) if wo_, <x<y=u,, then

|G(W1, X) — G(Wq_y, Y)| < &(80)7%,
) if w,_,<x<u, and J is a subdivision of [x, u,], then
> 1G] < (8B,
J
4) if u,=x<y<w,, then

|G(x, wg) — G(y, wo)| < &(81)7",
and
(5) if v,<x<w, and J is a subdivision of [v,, x], then

> 1GI < &(8B*)™.
J
We know from the hypothesis that , [] (14+G) exists for 1=¢=r.
Further, it follows from Lemma 1.8 that each of these integrals is nonzero.
Thus, Lemma 1.9 implies that G € OM°® on [4,, v,]. Hence, for 1=¢=¢,
there exists a subdivision D, of [u,, v,] such that if J={x,};_, is a refinement
of D, and {x;;}7% is a subdivision of [x,_;, x,], then

n n(i)
DP+G6-TTa+6) <esn™
=1 ij=1

Let D denote the subdivision %, D,VE of [a, b]. Suppose {x;};_o is a
refinement of D. Let {x,;}i=0 be the subsequence of {x;};_o such that
Xo=w;. Further, let {x,}i=1 and {x,}i-1 be the subsequences of
{x;}%o such that x,,,=u; and x,,,=v;. Let T(q), U(q) and ¥(q) denote
{10415 {19 0-1+1 and {i}X5(0)41, Tespectively. Further, let U, ¥, U'(q)
and V'(g) denote (w(i)+1}zh, W(@ler (1%nse and {F %k,
respectively. Finally, let S(q) and S'(g) represent U(g)\U¥(q) and U’'(q)V
V’(q), respectively.
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For 1=Zi=<n, there exists a subdivision {x,;}2 of [x;_;, x;] such that

n(i)

I—[ (l + Gii) - zs—xnzi (l + G)

i=1

Let H, represent 14+G,—[ Y (1+G,;). Thus,

>

i=1

< &(8n)™

146, -, 10+ G)| < S |Hil + [e@n)In
i=1

=3 SIHI+Y 3 HI+E

qal 2€S(q) a=1ieT(q) 8
< 2 2, |Hy| +[e80)7)t +
q=11eS(q)
- S HI+Y S |H,~|+f
iEeUVy a=11eS’(q) 4
= > |H|
eUVyY
t n(?) =1
+2> > [ +G,-}—{l +> [I’I(1+c,.,)]
q=11eS’(q) j=1 Lr=1
n(i) .
: [G,-,-l[l'I a+ G)]}l +5
s=j+1
t n(z)
=S HI+S S [IG.-I +BS lc,.,-|] +E
[304%) 4 e=1ieS’(a) j=1
< S H 4 (@B + BYe(8B) ) + =
teU UV 4
< > |H| + =
zEUUV n(i)
=SI0 +6G) = (1 + Gl + S 11+ Gal |—1 +ila+ay
€U €U 7=2
+ 211 + G) — (1 + G, )l
i€V
n(i)—1
+le +Gz n(t)l\ 1 + l—.[(l + Gti)
iV j=1
’ (i) =1
=316,- Gal + 83 |-1+[1 43 [H (1+6,)]i6,)
€U €U =2

[Hove)

=j+1
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+ 216G, = G, )|+ BD,

~1+ i +"%"l[ﬁ 1+ 6] 6,

eV eV i=1 r=1
n(i)—1 e
: [H 1+ G)]}’ 48
s=j+1 2
n(z)
< [B)']t + B*Y > |Gyl
€U i=2
n(i)—1
+ @)t + BD > |G, + 2
€V j=1 2

< Be(8B*))t + Bs(8B)")t + 3:8
= €.

Therefore, G € OM® on [a, b).

Lemma 1.10 is not true if only ,J [° (14G) is required to exist rather
than [ [ (14G) for a=x<y=b. For example, consider the function G
defined on [0, 1] such that, for 0=x<y=1,

(1) GO, x)=-1,

(2) G(x, y)=y—x if x7#0 and y is irrational, and

(3) G(x, y)=x—y if x50 and y is rational.

Thus, G € OB° and S, on [a, b] and [ ]* (14 G) exists and is zero. How-
ever, ,[ [V (1+G) does not exist for a<x<y=b, and thus, G ¢ OM° on
[a, b].

LemMA 1.11.  If Hand G are functions from RX R to Rsuchthat H € OL°
on [a, b], G € OB° on [a, b] and either G € OM°® on [a, b] or G € OA° on
[a, b], then HG € OM°® and OA° on [a, b).

Lemma 1.11 is a modification of a result of B. W. Helton [3, Theorem 2,
p- 494] obtained by using Lemma 1.3.

THEOREM 1. If F and G are functions from RX R to R such that F € OP°
and S,NS, on [a, b] and G € OB° and S, on [a, b}, then any two of the
following statements imply the other:

(1) F+G e OM° on [a, b],

(2) Fe OM® on [a, b), and

(3) GeOM?° on [a, b).

PROOF (1,2—3). There exists a subdivision E={w,};_, of [a, b] such
that if 1<i<t and w;, ;<x<y<w;, then |F(x,y)|<}. Let F'(x,y)=
F(x,y)if x¢ Eand y ¢ E, and let F'(x,y)=0 if x € E or y € E. Thus,
(14+F’)~ is in OL® on [a, b]. Further, it follows from Lemma 1.5 that
F'4+G € OM?°on [a, b] and F' € OM°® on [a, b]. Hence, since F' € OM° on
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[a,b], Lemma 1.7 implies that F' € OQ° on [a, b]. Also, note that
G(14F')'is in OB° and OP° on [a, b).

We now establish that ,J TV [14+G(1+F')™] exists by using the Cauchy
criterion for product integrals, where a<x<y=b. Let £>0. There exist
a subdivision D of [x, y] and positive numbers B and g such that if J and
K are refinements of D, then

M) T s A+F)I>B,

Q) Ty N4+GA+F)1]I<B,

3) Tlrn A+F)=TTgw (1+F)I<pe(2B)?, and

@ Ly A+F'+G)—T g (1+F +G)|<pe/2.

Suppose J and X are refinements of D. Thus,

LN

5 [Tao+F+6)-]]0+F +06)

J) K(I)

([Ta+ F')}{l’l [+ 60+ F))

J(I) Jn

~([a+ PTTu+6a+ F')“]}’

K(I) K(I)

=

[Tn+ca+my-T]on+6a+ F')“]l

Ju) K(I)

[Ton+e6a+Fy1

K

[Ta+F)

J

[Ta+m-=T]a+F)

J) KW

[Tin+6a+m M =1100+60+F)yY

J) K(I)

>B

— [B(2B)™1B,

and hence,

[Tou+ea+m-T10+60a+F)M
J) K(I)

e>

Therefore, the desired product integral exists.

Now, since ,[ JY [14+G(1+ F')™] exists for aSx<y=b and G(1+F’)?
is in OB° on [a, b}, it follows from Lemma 1.10 that G(1+F’)"! is in OM°
on [a, b]. Hence, since 14 F' is in OL®°, Lemma 1.11 implies that G € OM°
on [a, b].

PROOF (2, 3—1). This result is stated as Lemma 1.4 and is proved in a
previous paper by the author [S, Theorem 2].

ProoF (1, 3—2). Itfollows from Lemma 1.1 that F+G € OP° on [a, b].
Further, F+G € $;NS, on [a, b], and —G € OB° and OM° on [a, b].
Therefore, Lemma 1.4 implies that F=F+G—G is in OM° on [a, b].
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