MUTUAL EXISTENCE OF PRODUCT INTEGRALS

JON C. HELTON

ABSTRACT. Definitions and integrals are of the subdivision-refinement type, and functions are from $R \times R$ to R, where R represents the real numbers. Let OM° be the class of functions G such that $_x \prod^{r} (1+G)$ exists for $a \le x < y \le b$ and $\int_a^b |1+G-\prod(1+G)| = 0$. Let OP° be the class of functions G such that $|\prod_{q=1}^b (1+G_q)|$ is bounded for refinements $\{x_q\}_{q=0}^n$ of a suitable subdivision of [a, b]. If F and G are functions from $R \times R$ to R such that $F \in OP^{\circ}$ on [a, b], $\lim_{x,y\to p^+} F(x,y)$ and $\lim_{x,y\to p^+} F(x,y)$ exist and are zero for $p \in [a,b]$, each of $\lim_{x\to p^+} F(p,x)$, $\lim_{x\to p^-} F(x,p)$, $\lim_{x\to p^+} G(p,x)$ and $\lim_{x\to p^-} G(x,p)$ exist for $p \in [a,b]$, and G has bounded variation on [a,b], then any two of the following statements imply the other: $(1) F+G \in OM^{\circ}$ on [a,b], $(2) F\in OM^{\circ}$ on [a,b], and $(3) G\in OM^{\circ}$ on [a,b].

All integrals and definitions are of the subdivision-refinement type, and functions are from $R \times R$ to R, where R represents the set of real numbers. Furthermore, functions are assumed to be defined only for elements $\{x, y\}$ of $R \times R$ such that x < y. If $D = \{x_q\}_{q=0}^n$ is a subdivision of [a, b], then $D(I) = \{[x_{q-1}, x_q]\}_{q=1}^n$ and $G_q = G(x_{q-1}, x_q)$. Further, $\{x_{qr}\}_{r=0}^{n(q)}$ represents a subdivision of the interval $[x_{q-1}, x_q]$ and $G_{qr} = G(x_{q,r-1}, x_{qr})$. The statement that $\int_a^b G$ exists means there exists a number L such that, if $\varepsilon > 0$, then there exists a subdivision D of [a, b] such that if J is a refinement of D, then

$$\left|L - \sum_{I(I)} G\right| < \varepsilon.$$

The statement that $_a \prod^b (1+G)$ exists means there exists a number L such that, if $\varepsilon > 0$, then there exists a subdivision D of [a, b] such that if J is a refinement of D, then

$$\left|L - \prod_{I(I)} (1+G)\right| < \varepsilon.$$

Further, $G \in OA^{\circ}$ on [a, b] only if $\int_a^b G$ exists and $\int_a^b |G - \int G| = 0$, and

Presented to the Society, October 30, 1972; received by the editors October 6, 1972. AMS (MOS) subject classifications (1970). Primary 26A39, 26A42.

Key words and phrases. Product integral, sum integral, subdivision-refinement integral, interval function.

 $G \in OM^{\circ}$ on [a, b] only if $_{x}\prod^{y}(1+G)$ exists for $a \le x < y \le b$ and $\int_{a}^{b} |1+G-\prod (1+G)| = 0$.

The statements that G is bounded, $G \in OP^{\circ}$, $G \in OQ^{\circ}$ and $G \in OB^{\circ}$ on [a, b] mean there exist a subdivision D of [a, b] and positive numbers B and β such that if $J = \{x_a\}_{a=0}^n$ is a refinement of D, then

- (1) |G(u)| < B for $u \in J(I)$,
- (2) $\left|\prod_{q=r}^{s} (1+G_q)\right| < B$ for $1 \le r \le s \le n$,
- (3) $\left|\prod_{q=r}^{s} (1+G_q)\right| > \beta$ for $1 \le r \le s \le n$, and
- (4) $\sum_{J(I)} |G| < B$,

respectively.

If G is a function, then $G \in S_1$ on [a, b] only if $\lim_{x,y\to p^+} G(x, y)$ and $\lim_{x,y\to p^+} G(x, y)$ exist and are zero for $p \in [a, b]$, and $G \in S_2$ on [a, b] only if $\lim_{x\to p^+} G(p, x)$ and $\lim_{x\to p^+} G(x, p)$ exist for $p \in [a, b]$. Further, $G \in OL^\circ$ on [a, b] only if $\lim_{x,y\to p^+} G(x, y)$, $\lim_{x,y\to p^-} G(x, y)$, $\lim_{x\to p^+} G(p, x)$ and $\lim_{x\to p^-} G(x, p)$ exist for $p \in [a, b]$. See B. W. Helton [2] and J. S. MacNerney [7] for additional details.

LEMMA 1.1. If F and G are functions from $R \times R$ to R such that $F \in OP^{\circ}$ on [a, b] and $G \in OB^{\circ}$ on [a, b], then $F+G \in OP^{\circ}$ on [a, b].

Lemma 1.1 is part of a previous result by the author [5, Theorem 1].

LEMMA 1.2. If G is a function from $R \times R$ to R such that $\int_a^b G$ exists, then $G \in OA^{\circ}$ on [a, b].

Lemma 1.2 is due to A. Kolmogoroff [6, p. 669]. The reader is also referred to results by W. D. L. Appling [1, Theorems 1, 2, p. 155] and B. W. Helton [2, Theorem 4.1, p. 304].

LEMMA 1.3. If G is a function from $R \times R$ to R such that $G \in OB^{\circ}$ on [a, b], then the following statements are equivalent:

- (1) $G \in OM^{\circ}$ on [a, b],
- (2) $G \in OA^{\circ}$ on [a, b], and
- (3) $\int_a^b G \ exists$.
- B. W. Helton [2, Theorem 3.4, p. 301] shows that (1) and (2) are equivalent. Further, by Lemma 1.2, (2) and (3) are equivalent.

LEMMA 1.4. If F and G are functions from $R \times R$ to R such that $F \in OM^{\circ}$, OP° and $S_1 \cap S_2$ on [a, b] and $G \in OM^{\circ}$ and OB° on [a, b], then $F+G \in OM^{\circ}$ on [a, b].

Lemma 1.4 is proved in a previous paper by the author [5, Theorem 2]. In the original version [5, Theorem 2] the theorem is stated with the requirement that $\int_a^b G$ exist rather than $G \in OM^{\circ}$ on [a, b]. However, Lemma 1.3 establishes the equivalence of the two forms.

LEMMA 1.5. If E is a finite set of points from [a, b] and F, G and H are functions from $R \times R$ to R such that

- (1) $G \in OB^{\circ}$ and S_2 on [a, b],
- (2) $H \in OP^{\circ}$ and $S_1 \cap S_2$ on [a, b],
- (3) $H+G \in OM^{\circ}$ on [a, b], and
- (4) $F \in S_2$ on [a, b] and if $a \le x < y \le b$, then F(x, y) = H(x, y) if $x \notin E$ and $y \notin E$,

then $F+G \in OM^{\circ}$ on [a, b].

PROOF. Lemma 1.1 establishes that $H+G \in OP^{\circ}$ on [a, b]. Further, $H+G \in S_1 \cap S_2$ on [a, b]. Let H' be the function defined on [a, b] such that if $a \le x < y \le b$, then

- (1) H'(x, y)=0 if $x \notin E$ and $y \notin E$, and
- (2) H'(x, y) = F(x, y) H(x, y) if $x \in E$ or $y \in E$.

Thus, $H' \in OM^{\circ}$ and OB° on [a, b]. Therefore, by Lemma 1.4, H+G+H' is in OM° on [a, b]. Hence, since $H+G+H' \equiv F+G$ on [a, b], $F+G \in OM^{\circ}$ on [a, b].

LEMMA 1.6. If G is a bounded function from $R \times R$ to R such that ${}_{a} \prod^{b} (1+G)$ exists and is not zero, then $G \in OP^{\circ}$ and OQ° on [a, b].

Lemma 1.6 is a special case of a previous result by the author [4, Theorem 2].

LEMMA 1.7. If G is a bounded function from $R \times R$ to R such that $G \in OM^{\circ}$ on [a, b] and 1+G is bounded away from zero on [a, b], then $G \in OP^{\circ}$ and OO° on [a, b].

PROOF. Since $G \in OM^{\circ}$ on [a, b] and 1+G is bounded away from zero on [a, b], ${}_{a} \prod^{b} (1+G)$ exists and is not zero. Therefore, it follows from Lemma 1.6 that $G \in OP^{\circ}$ and OQ° on [a, b].

LEMMA 1.8. If G is a function from $R \times R$ to R such that $G \in OB^{\circ}$ on [a, b] and 1+G is bounded away from zero on [a, b], then $G \in OQ^{\circ}$ on [a, b].

Lemma 1.8 is a special case of a previous result by the author [5, Theorem 3].

LEMMA 1.9. If G is a bounded function from $R \times R$ to R such that ${}_{a} \prod^{b} (1+G)$ exists and is not zero, then $G \in OM^{\circ}$ on [a,b].

Lemma 1.9 follows from Lemma 1.6 and a result of B. W. Helton [2, Theorem 4.2, p. 305].

LEMMA 1.10. If G is a function from $R \times R$ to R such that $G \in OB^{\circ}$ and S_2 on [a, b] and $a \cap B \cap B$ and $a \cap B \cap B$ and $a \cap B \cap B$ and $a \cap B \cap B \cap B$ are $a \cap B \cap B \cap B$.

PROOF. Let $\varepsilon > 0$. Since $G \in OB^{\circ}$ on [a, b], there exist a subdivision D_0 of [a, b] and a number B > 1 such that if $\{x_i\}_{i=0}^n$ is a refinement of D_0 and $1 \le r \le s \le n$, then

$$\left| \prod_{i=r}^{s} \left(1 + G_i \right) \right| < B.$$

There exists a subdivision $E = \{w_q\}_{q=0}^t$ of [a, b] such that if $1 \le q \le t$ and $w_{q-1} < x < y < w_q$, then $|G(x, y)| < \frac{1}{2}$. Further, there exist sequences $\{u_q\}_{q=1}^t$ and $\{v_q\}_{q=1}^t$ such that

- (1) $w_{q-1} < u_q < v_q < w_q$,
- (2) if $w_{a-1} < x < y \le u_a$, then

$$|G(w_{g-1}, x) - G(w_{g-1}, y)| < \varepsilon(8t)^{-1},$$

(3) if $w_{a-1} < x < u_a$ and J is a subdivision of $[x, u_a]$, then

$$\sum_{J(I)} |G| < \varepsilon (8B^3t)^{-1},$$

(4) if $u_a \leq x < y < w_a$, then

$$|G(x, w_a) - G(y, w_a)| < \varepsilon(8t)^{-1}$$

and

(5) if $v_q < x < w_q$ and J is a subdivision of $[v_q, x]$, then

$$\sum_{J(I)} |G| < \varepsilon (8B^3t)^{-1}.$$

We know from the hypothesis that $u_q \prod^{v_q} (1+G)$ exists for $1 \le q \le t$. Further, it follows from Lemma 1.8 that each of these integrals is nonzero. Thus, Lemma 1.9 implies that $G \in OM^\circ$ on $[u_q, v_q]$. Hence, for $1 \le q \le t$, there exists a subdivision D_q of $[u_q, v_q]$ such that if $J = \{x_i\}_{i=0}^n$ is a refinement of D_q and $\{x_{ij}\}_{j=0}^{n(i)}$ is a subdivision of $[x_{i-1}, x_i]$, then

$$\sum_{i=1}^{n} \left| 1 + G_i - \prod_{i=1}^{n(i)} (1 + G_{ii}) \right| < \varepsilon (8t)^{-1}.$$

Let D denote the subdivision $\bigcup_{q=0}^t D_q \cup E$ of [a,b]. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D. Let $\{x_{w(i)}\}_{i=0}^t$ be the subsequence of $\{x_i\}_{i=0}^n$ such that $x_{w(i)} = w_i$. Further, let $\{x_{u(i)}\}_{i=1}^t$ and $\{x_{v(i)}\}_{i=1}^t$ be the subsequences of $\{x_i\}_{i=0}^n$ such that $x_{u(i)} = u_i$ and $x_{v(i)} = v_i$. Let T(q), U(q) and V(q) denote $\{i\}_{i=u(q)+1}^{v(q)}$, $\{i\}_{i=w(q-1)+1}^{u(q)}$ and $\{i\}_{i=v(q)+1}^{w(q)}$, respectively. Further, let U, V, U'(q) and V'(q) denote $\{w(i)+1\}_{i=0}^{t-1}$, $\{w(i)\}_{i=1}^t$, $\{i\}_{i=w(q-1)+2}^{u(q)}$ and $\{i\}_{i=v(q)+1}^{w(q)-1}$, respectively. Finally, let S(q) and S'(q) represent $U(q) \cup V(q)$ and $U'(q) \cup V'(q)$, respectively.

For $1 \le i \le n$, there exists a subdivision $\{x_{ij}\}_{j=0}^{n(i)}$ of $[x_{i-1}, x_i]$ such that

$$\left| \prod_{j=1}^{n(i)} (1 + G_{ij}) - \prod_{x_{i-1}} x_i (1 + G) \right| < \varepsilon (8n)^{-1}.$$

Let H_i represent $1+G_i-\prod_{j=1}^{n(i)}(1+G_{ij})$. Thus,

$$\begin{split} \sum_{i=1}^{n} \left| 1 + G_{i} - \prod_{x_{i-1} \prod z^{i}} (1+G) \right| &< \sum_{i=1}^{n} |H_{i}| + \left[\varepsilon(8n)^{-1} \right] n \\ &= \sum_{q=1}^{t} \sum_{i \in S(q)} |H_{i}| + \sum_{q=1}^{t} \sum_{i \in T(q)} |H_{i}| + \frac{\varepsilon}{8} \\ &< \sum_{q=1}^{t} \sum_{i \in S(q)} |H_{i}| + \left[\varepsilon(8t)^{-1} \right] t + \frac{\varepsilon}{8} \\ &= \sum_{i \in U \cup V} |H_{i}| + \sum_{q=1}^{t} \sum_{i \in S'(q)} |H_{i}| + \frac{\varepsilon}{4} \\ &= \sum_{i \in U \cup V} |H_{i}| \\ &+ \sum_{q=1}^{t} \sum_{i \in S'(q)} \left| \left\{ 1 + G_{i} \right\} - \left\{ 1 + \sum_{j=1}^{n(i)} \left[\prod_{r=1}^{j-1} (1+G_{ir}) \right] \right. \right. \\ & \left. \left. \left[G_{ij} \right] \left[\prod_{s=j+1}^{n(i)} (1+G_{is}) \right] \right) \right| + \frac{\varepsilon}{4} \\ &< \sum_{i \in U \cup V} |H_{i}| + \left[\varepsilon(8B^{3}t)^{-1} \right] t + B^{2} \left[\varepsilon(8B^{2}t)^{-1} \right] t + \frac{\varepsilon}{4} \\ &< \sum_{i \in U \cup V} |H_{i}| + \frac{\varepsilon}{2} \\ &\leq \sum_{i \in U \cup V} |H_{i}| + \frac{\varepsilon}{2} \\ &\leq \sum_{i \in U} |(1+G_{i}) - (1+G_{i1})| + \sum_{i \in U} |1+G_{i1}| \left| -1 + \prod_{j=2}^{n(i)} (1+G_{ij}) \right| \\ &+ \sum_{i \in V} |1+G_{i,n(i)}| \left| -1 + \prod_{j=1}^{n(i)-1} (1+G_{ij}) \right| + \frac{\varepsilon}{2} \\ &\leq \sum_{i \in U} |G_{i} - G_{i1}| + B \sum_{i \in U} \left| -1 + \left\{ 1 + \sum_{j=2}^{n(i)} \left[\prod_{r=2}^{j-1} (1+G_{ir}) \right] \left[G_{ij} \right] \right. \\ &\left. \left. \left[\prod_{s=i+1}^{n(i)} (1+G_{is}) \right] \right| \right| \end{aligned}$$

$$\begin{split} + \sum_{i \in V} |G_i - G_{i,n(i)}| + B \sum_{i \in V} \left| -1 + \left\{ 1 + \sum_{j=1}^{n(i)-1} \left[\prod_{r=1}^{j-1} (1 + G_{ir}) \right] [G_{ij}] \right. \\ & \cdot \left[\prod_{s=j+1}^{n(i)-1} (1 + G_{is}) \right] \right\} \left| + \frac{\varepsilon}{2} \right. \\ < \left[\varepsilon (8t)^{-1} \right] t + B^3 \sum_{i \in U} \sum_{j=2}^{n(i)} |G_{ij}| \\ & + \left[\varepsilon (8t)^{-1} \right] t + B^3 \sum_{i \in V} \sum_{j=1}^{n(i)-1} |G_{ij}| + \frac{\varepsilon}{2} \\ < B^3 [\varepsilon (8B^3t)^{-1}] t + B^3 [\varepsilon (8B^3t)^{-1}] t + \frac{3\varepsilon}{4} \\ &= \varepsilon. \end{split}$$

Therefore, $G \in OM^{\circ}$ on [a, b].

Lemma 1.10 is not true if only $_a \prod^b (1+G)$ is required to exist rather than $_x \prod^y (1+G)$ for $a \le x < y \le b$. For example, consider the function G defined on [0, 1] such that, for $0 \le x < y \le 1$,

- (1) G(0, x) = -1,
- (2) G(x, y) = y x if $x \neq 0$ and y is irrational, and
- (3) G(x, y) = x y if $x \neq 0$ and y is rational.

Thus, $G \in OB^{\circ}$ and S_2 on [a, b] and $a \prod^b (1+G)$ exists and is zero. However, $a \prod^y (1+G)$ does not exist for $a \le x < y \le b$, and thus, $G \notin OM^{\circ}$ on [a, b].

LEMMA 1.11. If H and G are functions from $R \times R$ to R such that $H \in OL^{\circ}$ on [a, b], $G \in OB^{\circ}$ on [a, b] and either $G \in OM^{\circ}$ on [a, b] or $G \in OA^{\circ}$ on [a, b], then $HG \in OM^{\circ}$ and OA° on [a, b].

Lemma 1.11 is a modification of a result of B. W. Helton [3, Theorem 2, p. 494] obtained by using Lemma 1.3.

THEOREM 1. If F and G are functions from $R \times R$ to R such that $F \in OP^{\circ}$ and $S_1 \cap S_2$ on [a, b] and $G \in OB^{\circ}$ and S_2 on [a, b], then any two of the following statements imply the other:

- (1) $F+G \in OM^{\circ}$ on [a,b],
- (2) $F \in OM^{\circ}$ on [a, b], and
- (3) $G \in OM^{\circ}$ on [a, b].

PROOF $(1, 2\rightarrow 3)$. There exists a subdivision $E = \{w_i\}_{i=0}^t$ of [a, b] such that if $1 \le i \le t$ and $w_{i-1} < x < y < w_i$, then $|F(x, y)| < \frac{1}{2}$. Let F'(x, y) = F(x, y) if $x \notin E$ and $y \notin E$, and let F'(x, y) = 0 if $x \in E$ or $y \in E$. Thus, $(1+F')^{-1}$ is in OL° on [a, b]. Further, it follows from Lemma 1.5 that $F' + G \in OM^{\circ}$ on [a, b] and $F' \in OM^{\circ}$ on [a, b]. Hence, since $F' \in OM^{\circ}$ on

[a, b], Lemma 1.7 implies that $F' \in OQ^{\circ}$ on [a, b]. Also, note that $G(1+F')^{-1}$ is in OB° and OP° on [a, b].

We now establish that ${}_x\prod^y [1+G(1+F')^{-1}]$ exists by using the Cauchy criterion for product integrals, where $a \le x < y \le b$. Let $\varepsilon > 0$. There exist a subdivision D of [x, y] and positive numbers B and β such that if J and K are refinements of D, then

- (1) $|\prod_{J(I)} (1+F')| > \beta$,
- (2) $|\prod_{J(I)} [1+G(1+F')^{-1}]| < B$,
- (3) $|\prod_{J(I)} (1+F') \prod_{K(I)} (1+F')| < \beta \varepsilon (2B)^{-1}$, and
- (4) $|\prod_{J(I)} (1+F'+G) \prod_{K(I)} (1+F'+G)| < \beta \varepsilon/2$.

Suppose J and K are refinements of D. Thus,

$$\frac{\beta \varepsilon}{2} > \left| \prod_{J(I)} (1 + F' + G) - \prod_{K(I)} (1 + F' + G) \right| \\
= \left| \left\{ \prod_{J(I)} (1 + F') \right\} \left\{ \prod_{J(I)} [1 + G(1 + F')^{-1}] \right\} \right| \\
- \left\{ \prod_{K(I)} (1 + F') \right\} \left\{ \prod_{K(I)} [1 + G(1 + F')^{-1}] \right\} \right| \\
\ge \left| \prod_{J(I)} (1 + F') \right| \left| \prod_{J(I)} [1 + G(1 + F')^{-1}] - \prod_{K(I)} [1 + G(1 + F')^{-1}] \right| \\
- \left| \prod_{J(I)} (1 + F') - \prod_{K(I)} (1 + F') \right| \left| \prod_{K(I)} [1 + G(1 + F')^{-1}] \right| \\
> \beta \left| \prod_{J(I)} [1 + G(1 + F')^{-1}] - \prod_{K(I)} [1 + G(1 + F')^{-1}] \right| - [\beta \varepsilon (2B)^{-1}] B,$$

and hence,

$$\varepsilon > \left| \prod_{I(I)} \left[1 + G(1+F')^{-1} \right] - \prod_{F(I)} \left[1 + G(1+F')^{-1} \right] \right|.$$

Therefore, the desired product integral exists.

Now, since ${}_{x}\prod^{y}[1+G(1+F')^{-1}]$ exists for $a \le x < y \le b$ and $G(1+F')^{-1}$ is in OB° on [a, b], it follows from Lemma 1.10 that $G(1+F')^{-1}$ is in OM° on [a, b]. Hence, since 1+F' is in OL° , Lemma 1.11 implies that $G \in OM^{\circ}$ on [a, b].

PROOF $(2, 3\rightarrow 1)$. This result is stated as Lemma 1.4 and is proved in a previous paper by the author [5, Theorem 2].

PROOF $(1, 3 \rightarrow 2)$. It follows from Lemma 1.1 that $F+G \in OP^{\circ}$ on [a, b]. Further, $F+G \in S_1 \cap S_2$ on [a, b], and $-G \in OB^{\circ}$ and OM° on [a, b]. Therefore, Lemma 1.4 implies that $F \equiv F+G-G$ is in OM° on [a, b].

BIBLIOGRAPHY

- 1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo (2) 11 (1962), 154-156. MR 27 #4040.
- 2. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 #6167.
- 3. ——, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493-500. MR 40 #1562.
 - 4. J. C. Helton, Product integrals, bounds and inverses, Texas J. Sci. (to appear).
 - 5. ——, Bounds for products of interval functions, Pacific J. Math. (to appear).
- 6. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann. 103 (1930), 654-696.
- 7. J. S. MacNerney, *Integral equations and semigroups*, Illinois J. Math. 7 (1963), 148-173. MR 26 #1726.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281