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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

A NOTE ON ANALYTIC MEASURES

PAUL S.  MUHLY1

Abstract. A corollary to Forelli's generalization of the F.

and M. Riesz theorem is proved. It extends Bochner's result con-

cerning the absolute continuity of measures on the torus whose

Fourier-Stieltjes coefficients vanish outside a sector of opening less

than it.

In this note, X will be a left coset space G\H where G is a connected Lie

group and H is a closed subgroup. Each vector V in the Lie algebra © of

G determines a one-parameter group {Tt}teR of homeomorphisms on X

via the formula Tt(gH)=[e\p(tV)g]H, teR, gHeX. We shall refer to

{Tt}teK as the flow determined by V. If {Tt}teK is a flow on X and if p.

belongs to M(X), the space of finite regular Baire measures on X, then /u

is called analytic with respect to {Tt}teK in case the function of t,

Sx <f> ° T-t dfi, lies in /T°(/?) for each <f> in C0(X). A measure ¡x in M(X)
is called quasi-invariant with respect to {Tt}teJl in case \/x\ and \p\ ° Tt have

the same null sets for each t in R (|/i|=total variation measure of /¿). In

[3] Forelli proved that an analytic measure is quasi-invariant. In this note

we prove a corollary to Forelli's theorem which extends Bochner's

theorem [1, Theorem 5] and a theorem of de Leeuw and Glicksberg [2,

Theorem 3.4].

Theorem. Let Vx, ■ • ■ , Vn be a basis for © and let {Ti0}^ be the

flow on X determined by Vt, i= 1, • • • , n. If ¡i is a nonzero measure in M(X)

which is analytic with respect to each flow {T¡l>}te¡l, then ¡i is equivalent to

the transplant to X of (left or right) Haar measure on G.

Proof. By a theorem of Mackey [4, Theorem 1.1] it suffices to show

that |/i|(g£)=0 for each null set £ for |,a| and for each g in G. For g in G,
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define Tg by the formula

Tg(xH) = (gx)H,       xH e X.

First we show that 1^1 ° T„ moves continuously through M(X). Since the

map X—>X oT„, geG, Xe M(X) defines an isometric representation of G

on M(X), it suffices to check continuity at the identity e of G. By hypothesis

and Theorem 4 in [3], \p.\ ° T¡'} moves continuously through M(X) for

each /. Hence, as a calculation reveals, the map

On ' ' ' » '«) -*■ li"l ° Ttl ° ^"(2 ° ' " ' ° Ttn

is continuous from Rn into M(X). By the inverse function theorem, there

is a neighborhood 7V0 of the origin in Rn and a neighborhood Ne of e in G

such that the map

Ci, • ' • » O — expftF^expfoK,) • • • exp(/„FJ

is a diffeomorphism from jV0 onto Ne. The continuity at e of the map

g-*-\p\ o Tg follows. Let £ be a Baire set in X. Since |,a| o Tg moves con-

tinuously through M(X), the set of g such that \/j.\ ° T„(E)=0 is closed.

Since ¡i is quasi-invariant with respect to each {r¡!)},eA, it follows that if

\p,\ o Tg(E)=0 for some g in Ne, then 1^1 ° Tg(E)=0 for all ^ in Ne. Hence,

since g^-\ß\ ° Tg is continuous, the set of all g such that \fi\ ° 7'!,(£)=0 is

open. Since G is connected, this set is either all of G or empty, and the

proof is complete.
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