SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A NOTE ON ANALYTIC MEASURES

PAUL S. MUHLY¹

ABSTRACT. A corollary to Forelli's generalization of the F. and M. Riesz theorem is proved. It extends Bochner's result concerning the absolute continuity of measures on the torus whose Fourier-Stieltjes coefficients vanish outside a sector of opening less than π

In this note, X will be a left coset space G/H where G is a connected Lie group and H is a closed subgroup. Each vector V in the Lie algebra $\mathfrak G$ of G determines a one-parameter group $\{T_t\}_{t\in R}$ of homeomorphisms on X via the formula $T_t(gH) = [\exp(tV)g]H$, $t\in R$, $gH\in X$. We shall refer to $\{T_t\}_{t\in R}$ as the flow determined by V. If $\{T_t\}_{t\in R}$ is a flow on X and if μ belongs to M(X), the space of finite regular Baire measures on X, then μ is called analytic with respect to $\{T_t\}_{t\in R}$ in case the function of t, $\int_X \phi \circ T_{-t} d\mu$, lies in $H^\infty(R)$ for each ϕ in $C_0(X)$. A measure μ in M(X) is called quasi-invariant with respect to $\{T_t\}_{t\in R}$ in case $|\mu|$ and $|\mu| \circ T_t$ have the same null sets for each t in R ($|\mu|$ = total variation measure of μ). In [3] Forelli proved that an analytic measure is quasi-invariant. In this note we prove a corollary to Forelli's theorem which extends Bochner's theorem [1, Theorem 5] and a theorem of de Leeuw and Glicksberg [2, Theorem 3.4].

THEOREM. Let V_1, \dots, V_n be a basis for \mathfrak{G} and let $\{T_t^{(i)}\}_{t \in \mathbb{R}}$ be the flow on X determined by V_i , $i = 1, \dots, n$. If μ is a nonzero measure in M(X) which is analytic with respect to each flow $\{T_t^{(i)}\}_{t \in \mathbb{R}}$, then μ is equivalent to the transplant to X of (left or right) Haar measure on G.

PROOF. By a theorem of Mackey [4, Theorem 1.1] it suffices to show that $|\mu|(gE)=0$ for each null set E for $|\mu|$ and for each g in G. For g in G,

Received by the editors May 7, 1973.

AMS (MOS) subject classifications (1970). Primary 30A98, 46J15; Secondary 22D12. 22D40.

¹ This research was supported in part by the National Science Foundation.

define T_g by the formula

$$T_a(xH) = (gx)H, \qquad xH \in X.$$

First we show that $|\mu| \circ T_g$ moves continuously through M(X). Since the map $\lambda \to \lambda \circ T_g$, $g \in G$, $\lambda \in M(X)$ defines an isometric representation of G on M(X), it suffices to check continuity at the identity e of G. By hypothesis and Theorem 4 in [3], $|\mu| \circ T_t^{(i)}$ moves continuously through M(X) for each i. Hence, as a calculation reveals, the map

$$(t_1, \dots, t_n) \to |\mu| \circ T_{t_1}^{(1)} \circ T_{t_2}^{(2)} \circ \dots \circ T_{t_n}^{(n)}$$

is continuous from \mathbb{R}^n into M(X). By the inverse function theorem, there is a neighborhood N_0 of the origin in \mathbb{R}^n and a neighborhood N_e of e in G such that the map

$$(t_1, \dots, t_n) \rightarrow \exp(t_1 V_1) \exp(t_2 V_2) \dots \exp(t_n V_n)$$

is a diffeomorphism from N_0 onto N_e . The continuity at e of the map $g \rightarrow |\mu| \circ T_g$ follows. Let E be a Baire set in X. Since $|\mu| \circ T_g$ moves continuously through M(X), the set of g such that $|\mu| \circ T_g(E) = 0$ is closed. Since μ is quasi-invariant with respect to each $\{T_t^{(i)}\}_{t \in \mathbb{R}}$, it follows that if $|\mu| \circ T_g(E) = 0$ for some g in N_e , then $|\mu| \circ T_g(E) = 0$ for all g in N_e . Hence, since $g \rightarrow |\mu| \circ T_g$ is continuous, the set of all g such that $|\mu| \circ T_g(E) = 0$ is open. Since G is connected, this set is either all of G or empty, and the proof is complete.

REFERENCES

- 1. S. Bochner, Boundary values of analytic functions in several variables and of almost periodic functions, Ann. of Math. (2) 45 (1944), 708-722. MR 6, 124.
- 2. K. de Leeuw and I. Glicksberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205. MR 26 #1700.
- 3. F. Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-59. MR 35 #667.
- 4. G. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242