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EXTREME  FUNCTIONALS  ON  AN  UPPER
SEMICONTINUOUS FUNCTION SPACE

F.  CUNNINGHAM, JR.  AND  NINA   M.   ROY

Abstract. A representation theorem is given for the extreme

points of the dual ball of a vector valued function space A'with upper

semicontinuous norm defined on a compact Hausdorff space il.

This generalizes the Arens-Kelley theorem which is the case

X=C(Q).

One of the most powerful tools in the abstract geometric description

of Banach spaces X which are given by concrete representations is knowing

explicitly what the extreme points of the unit ball in X* are. The prototype

theorem of this type is the theorem of Arens-Kelley to the effect that if

X=C(Q.), £i compact Hausdorff, the extreme points of its dual ball are

exactly the evaluations at points of Í2 up to multiplication by scalars of

absolute value 1. The purpose of this note is to generalize this result in

two directions: (1) replace continuity of the functions by upper semi-

continuity of their absolute values, and (2) allow the functions to be

vector valued. See Theorem 1 below. The significance of these particular

hypotheses is to be found in [1]. Briefly, they make the theorem applicable

to arbitrary Banach spaces, viewed from the uniform norm point of view.

One of us (Roy) will exploit this generality elsewhere along the lines

already indicated. Our second theorem is an application of Theorem 1

to quotient modules to show how our method can be used to obtain a

related result announced by W. J. Ströbele [3].

Let Í2 be a compact Hausdorff space, and for each / e ii let Xt he a

normed linear space. We are interested in linear spaces X of functions x

defined on Í2 with x(t) e Xt for each /, and satisfying at least the first,

and usually both of the following:
(i) (Upper semicontinuity)  For each  x e X the  norm  function  /i->

||x(i)|| (norm in X,) is upper semicontinuous.

(ii) (Module property) For xe X and fie C(iï) the function fix defined

by multiplication (fx(t)=f(t)x(t) for all t) belongs to X.
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Of course (i) makes the functions in X bounded, and X becomes a

normed space with the uniform norm: [|jc||=supt||x(i)||- For convenience

we assume that Xt={x(t):xeX] for each /. Denote by B the unit ball

in X* and by £ the set of extreme points of B. Analogous notations

apply with the subscript / throughout. For t e Q and q e X* define the

"evaluation functional" etqeX* by etq(x)=q(x(t)). Then et:X?->X* is

an injective linear map of norm _1.

Theorem 1.    (a) If X satisfies (i), then

£cr {J{et(Et):teQ}.

(h) If X satisfies (i) and (ii), then

E={J{et(Et):teil,Xt^{0}}.

The proof generalizes a proof of the Arens-Kelley theorem as given,

for example, in [2, p. 441]. Let Q={J {et(Bt):t eQ.}.

Lemma 1.    Q is weak* closed.

Proof. Suppose p e X* is the weak* limit of a net {px}={et qx} in Q,

where tx eQ, qxe Bt . Since Q is compact we may assume that tx con-

verges to some íeü. Then for any xelwe obtain from (i) the inequality

\p(x)\ = lim \px(x)\ = lim \qx(x(tx))\

= limsup\\qx\\-\\x(tx)\\<:\\x(t)\\.

In particular if x(t)=0 it follows that p(x)=0. Thus a linear functional q

is well defined on Xt by q(x(t))=p(x). The above inequality then shows

that q is bounded, in fact that q e Bt. Since clearly p=etq, we have p eQ

and the lemma is proved.

Lemma 2.   cl co Q=B.

Proof. We mean on the left the weak* closed convex hull of Q.

Since Q^B and B is convex and weak* compact, the inclusion cl co Q<^B

is clear. Conversely, observe that the polar of Q in X is contained in the

unit ball, that is, Q°<^B°. Also, since cl co Q is balanced (because Q is),

we have Q°°=c\coQ [4, Theorem 1, p. 238]. Therefore cl co Q=

Q°°z>B°° = B.

Proof of Theorem 1 (a). According to Lemmas 1 and 2, [2, Lemma

5, p. 440] applies and shows that £cß. Thus any p e E is of the form

p=etq for some t eQ, q e Bt. But then q must be an extreme point of Bt

because/; is an extreme point of B and et:Bt—>-B is linear and injective.

For part (b) of the theorem, define the set of functionals with support
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{/} (teil) as follows:

At = {peX*:xeX andx(t) = 0 imply p(x) = 0}.

Lemma 3.    et is an isometry of X* onto At.

Proof. Clearly et maps X* into At. We construct its inverse at as

follows. For peAt, a linear functional atp on Xt is well defined by

atp(x(t))=p(x) for xelTo show that atp is bounded and to estimate its

norm, let £>0 be given. For an element x e X such that x(t)?±0, by the

upper semicontinuity of the norm there is a neighborhood U of t such that

||x(s)||<(l+e)||*(0ll for *e t/. Let/e C(Q) satisfy |/|^l,/(/)=l,/=0
outside U. Then fixe X, ||/jc||^(l+f)||jc(0ll and

\alP(x(t))\ = \atp(fx(t))\ = \p(fix)\

Ú \\P\\ ■ IIAII Ú (1 + e) \\p\\ ■ Mt)l

This shows that atp e X* and at : A t->-X* has norm <1. Since at and et

are clearly inverses of each other, and both are of norm ^ 1, they are

isometries.

Proof of Theorem 1 (b). It remains to show et(Et)<^E for /efl,

Xtj£{0}. Suppose to the contrary that p=etq where q e Et, Xtj¿{0}, and

p $ E. Then p=(px+Pv)l2 where /?,, p2e B and Px^Pz- If we can prove

Px, p2 e At, then by Lemma 3 we shall have a contradiction. To this end,

let x e X with x(t)=0, and let e>0 be given. By the upper semicontinuity

of the norm of x there is a neighborhood U of / such that |[x(s)||<£ for

se U. Find/eC(Q) satisfying |/|<l,/(/)= 1, and/=0 outside (7. Also,

from the fact that \\q\\ = 1 find y e X so that \\y\\ ̂  1 and qiyit)) is real and

>1—£. Set z=fy. Then q(z(t))=q(y(t))>\ — £ and ||z||<n. Moreover,

since z is 0 outside U and ||x(s)||^£ for s in (J, we have ||x-r-z||^l+£.

Now |/>i(z)|^H^ill • ||z||^l, and similarly |/?2(z)|^l. Thus pxiz) and/?2(z)

are complex numbers in the unit disk whose midpoint />(z) is real and

> 1 — e. Therefore

\pxiz)-p2iz)\ < 2V(1 - (1 - £)2) < 2V(2£).

The same argument applied to x+z in place of z (with the disk slightly

enlarged) gives

\px(x + z) - p2(x + z)\ <4je.

Combining these gives \px(x)— p2(x)\<%Je, whence Px(x)— p2(x)=0.

Thus px—p2eAt. Since also (px+p2)/2=p e A,, we have /?,, p2eAt as

required, completing the proof of Theorem 1.

In Theorem 2 we assume that A' is a function space on O satisfying

both (i) and (ii) and that Y<=X is a subspace, not necessarily closed,

which is a C(0)-submodule, that ¡s,   Y is invariant under the action of
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C(Q) by multiplication. To avoid triviality assume Y^X, and let YL =

{p e X* :p(y)=0 for all y in Y}. Then X¡ Y becomes a normed linear space

in the usual way, and (X\ Y)* can be identified isometrically with Y1, the

dual unit ball being Y1- C\B.

For t e Q define Yt={y(t):y e Y}. The above notations are repeated

with the subscript t, giving an isometry of (XJ Yt)* with Y¿-, the unit ball

here being Yj- (~\Bt. For any set S we write Ext(S) for the set of extreme

points of S.

Theorem2.    Ext(Y±nB)=\J {e^Ex^Yt1 nBt)):t eQ, Tt9*Xt}.

The proof will be an application of Theorem 1. To make Theorem 1

applicable we need to construe X\ Y as a function space on Q satisfying

(i) and (ii) with XJ Yt as component space at t e Q. The key to this is the

following lemma.

Lemma 4.   Let xeX. Then

inf ||x - y\\ = sup inf ||x(f) - y(i)||-
yeY iefl yeY

Proof. Let the right member of this equation be called d. Since for

teQandye Y, \\x(t)—y(t)\\ = \\(x—y)(t)\\<\\x—y\\, we obtain by taking

infimum over y e Y and then supremum over t eQ that d=-infyçY\\x— y\\.

For the converse inequality let £>0 be given, and for each t e Q

choose yt e Y so that ||x(i) — yt(t)\\<.d+e. Then sinceir-»||.x(s)—_yt(s)|| is

upper semicontinuous we can find for each / an open neighborhood Ut oft

such that \\x(s)—yt(s)\\<d+e for all s e Ut. Let {l/„ - • • , Un} be a finite

covering of Q by such neighborhoods. Let the corresponding points / be

r„ • • • , tn and let y{**yt (i= 1, • • • , n). Let {/x, • • • ,/„} be a continuous

partition of 1 subordinate to the covering (C/j, • • • , Un} and set y=

2?=i/)V Then y e Y, and for each t e Q we have

\\x(t) - y(t)\\ = \\2fi(t)[x(t) - yi(t)}\\

= 2 /<(o wo - yxoii < d + e.
teUi

Taking supremum over t eQ gives \\x—y\\^d+e, and, £ being arbitrary,

the lemma is proved.

Proof of Theorem 2. For each x e X define a function x on Q by

x(t)=x(t)+ Yt (an element of XJ Yt). Let X be the function space

{x:xeX} with the uniform norm: ||jf|| =sup(||Jc(í)||=í/ of Lemma 4.

According to Lemma 4 (with d=0) x(t)=0 if and only if x e 7, so that

x+ y<->x is an isomorphism of X\ Y with X. Lemma 4 states that this

isomorphism is in fact an isometry. With the identifications (XjY)*= YL

and (XJYt)*= Yf, Theorem 2 follows from Theorem 1 as soon as we
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show that X satisfies (i) and (ii). To verify (i) note that for x e X

|*(0I - inf ||x(i) - XOII.

Since for each y e Y, tt-^\\x(t)—y(t)\\ is upper semicontinuous, it follows

that íi->||x(í)|| is also. Finally, (ii) is immediate from the identity (fix)" (t)=

f(t)x(t) which holds for fie C(Q), x e X, t e ii. Theorem 2 is proved.

The following special case of Theorem 2 was announced (in part) by

W. J. Ströbele [3]. Let The locally compact Hausdorff, S<=^ Ta nonempty

subset. Let TV be a normed linear space, and ¥c N a linear subspace, not

necessarily closed. Let X=C0(T, N) be the normed space (with the uni-

form norm) of all continuous functions on Tto N which vanish at infinity,

and let Y={x e X:x(S)<= M). For q e N* and t e T define etq e X* by

etq(x)=q(x(t)). Finally, write BN and Bx for the unit balls in N* and X*

respectively.

Corollary.   Ext(YxnBx)=\J {^(ExtfM1 r\BN)):teS}.

Proof. Let Q=7"u{cx>} be the one-point compactification of T.

Extend the functions in Xto Í2 by always setting x(oo)=0. The conditions

of Theorem 2 are evidently satisfied by the pair X, Y. Here M<= yt<= M

for / e S, whereas Yt=N fort$5 (t?¿ co).
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