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Abstract. An //.D-function (harmonic and Dirichlet-finite)

co on a Riemann surface R is called /fD-minimal if cu>0 and every

/TD-function cu' with 0_cu'^co reduces to a constant multiple of co.

An i/.D~-function is the limit of a decreasing sequence of positive

//X>-functions and //ZT-minimality is defined as in //D-functions.

The purpose of the present note is to answer in the affirmative the

open question : Does there exist a Riemann surface which carries an

HD~-minimal function but no //£>-minimal functions?

An HD-f\xncúon (harmonic and Dirichlet-finite) co on a Riemann

surface R is called /iD-minimal if w is positive and every //D-function co'

with 0<co'_oj reduces to a constant multiple of co on R. Let {con} be a

decreasing sequence of positive H D-functions on R. Then its limit is

harmonic on R, and called an //£>~-function on R. 7/D~-minimality

can be defined as for //jD-minimal functions. Denote by UHD (resp.

UHD~) the class of open Riemann surfaces on which an //Z)-minimal

(resp. //£>~-minimal) function exists (Constantinescu and Cornea [2]).

It is well known (Nakai [5], see also Sario-Nakai [7, p. 186]) that the

inclusion UHD c UHD~ holds. The purpose of the present paper is to

show that the inclusion is strict. For Riemannian manifolds of dim_3

its strictness was established in Kwon [4]. For the sake of completeness we

shall also give a somewhat simplified proof.

It should be noted that our reasoning is suggested by ingenious examples

of Toki ([8], [9]); see also Sario [6]. The author is very grateful to the

referee for his helpful suggestions.

1. First we demonstrate a hyperbolic Riemann surface which does not

carry nonconstant positive harmonic functions (Toki [9]). For the sake

of simplicity we follow the construction and the notation in Ahlfors and

Sario [1, pp. 256-261].
Our surface will be obtained from the unit disk U: \z\ < 1 by identifying,
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pairwise or cyclically, edges of infinitely many radial slits. For a slit

S={rei°\0<a<:r<ib<l}, set S+={rei{x+0)\a^r^b} and S-={reil"-0)\a^

r^b}. Two radial slits Sx and S2 are identified pairwise if Sf is connected

with S2 and Sx with S2. The radial slits Sx, S8, • • •, Sn are identified

cyclically if Sx is connected with S2, S2 with S3, etc., and finally S"£ with

Sx. Here we understand that all the slits extend between two concentric

circles.

For a pair (Â, k) of positive integers h, k, setp = i2h—l)2k~1. With each//

we associate 2*4"5" radial slits, equally spaced and one being on the positive

real axis, such that their end points lie on \z\=rifl_2 and |z|=r4/1_i, where

log rß = —2~" for all ft^l. A slit associated with p=p{h, k) will be called

of rank p and type k. For each k ̂  1 denote by Sik the sectors : 2m • 2~k ̂

e^27r(/+l) ■ 2-*, 0^i<2*. The slits of type k on the rays %=2iri-2-k

will be identified cyclically. The remaining slits of the same type are

identified pairwise within each sector Sik, symmetrically with respect to

its bisecting ray. Let 0 be the resulting Riemann surface.

Lemma 1. The Riemann surface 0 is hyperbolic, but every positive

harmonic function on 0 reduces to a constant.

For a proof we refer the reader to Ahlfors and Sario [1, pp. 256-261].

2. Denote by U0 the Riemann surface obtained from 0 by deleting

all the radial slits

2 = {reie I -2~4" < log r < -2-4"-\ 6 = 2ttv • 2-""}
hk

for l^v^24'1. Let {U0H)}X be a sequence of duplicates of U0. For each

fixed k^.1 and subsequently for/^0 and l^/^2fc-1, join U0il+2kj),

crosswise along all the slits 2^(^=1)» with U0il+2k-1+2kj) (cf. Sario

[6]). The resulting Riemann surface R is an infinitely sheeted covering

surface of 0. Let tt:R-*0 be the natural projection.

Lemma 2. The Riemann surface R carries no nonconstant bounded

harmonic functions. Furthermore every bounded harmonic function u on the

subregion

G = {xeR\Wix)\>rx}

takes the same value on 7r_1(z) for each z e 0 whenever it continuously

vanishes on the relative boundary

dG = {x e R I |tt(x)| = rx},
where log rx— — 2_1.

For the proof the reader is referred to Sario-Nakai [7, pp. 178-181].
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3. For each integer /_ 1, consider the subset of R:

Rt=\uci\ uiui/oO')

where G,={x e U0(j)\ \ir(x)\>ry). It is obvious that G=(jf=y G¡ and the

Riemann surface G is an infinitely sheeted covering surface of the

"annulus" {z e 0\\z\>rx}.

We are now ready to state our main result (cf. Kwon [4]) :

Theorem 1. The Riemann surface G carries a unique (up to constant

factors) HD -minimal function but no HD-minimal functions. Thus the

inclusion UHD<^ UHD~ is strict for Riemann surfaces.

The proof will be given in §§4-5. For convenience we shall follow the

notation and terminology in Sario-Nakai [7]. All results needed con-

cerning the Royden and Wiener compactifications can be found in Sario-

Nakai [7, Chapters 3 and 4].

4. For each w_ 1 choose um e HBD(Rm), the class of bounded Dirichlet-

finite harmonic functions on Rm, such that 0_Km_l on R, um=0 on

\JT=i [Uo(j)—Gj], and um=l on the Royden harmonic boundary of R.

In view of the fact that R is hyperbolic and carries no nonconstant

bounded harmonic functions, the Wiener harmonic boundary AN and

the Royden harmonic boundary AM ofR consist of single points. Therefore

the maximum principle yields

Wm(x)>l-(Iog|7r(x)|)/logr1

on G. Clearly Mm=«m+i and therefore the sequence {um} converges,

uniformly on compact subsets of G, to an //£)~-function u on G. It is

obvious that 0<k<1 on G and u=0 on R — G.

We claim that the function u is HD -minimal on G. In fact let

v e HD~(G), the class of HD -functions on G, satisfy 0<t;_w on G.

Since
0 _ lim sup v(x) _ lim sup u(x) = 0

zeG,z-*y zeG,z-*y

for every y e dG, the function v can also be continuously extendable to

R with v\R—G=0. Again by the maximum principle we have v=a.u

on G, where a=Iim2._A v(x) the limit being taken in the Wiener compacti-

fication of jR.

5. Suppose that the function u is /LD-minimal on G. Then u must have

a finite Dirichlet integral over G. But u has a continuous extension to

Gu9G with u\dG=0. Therefore u must attain the same value at all

the points in G which lie over the same point in 0, a contradiction.
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Finally it remains to show that every ///T-minimal function on G is

a constant multiple of u. Let a> be another //ZT-minimal function on G.

Choose a point q e AM0, the Royden harmonic boundary of G, such

that q has a positive harmonic measure and lim sup^^.^. eo(x)=0 for

almost all q' e AM-0—{q} relative to a harmonic measure p for G. Then

to has an integral representation in the form :

a>(x) = f      P(x,y)a>(y)dpiy)
J&M.0

on G, where P(x, y) is the harmonic kernel and w(y)=lim suoœQx^v <o(y)

for y e Am.q (Nakai [5]; see also Sario-Nakai [7, p. 183]).

Let j:G*-+G<=R* be the subjective continuous mapping such that

j(x)=x on G and f(x)=f(j(x)) for all x e G*, the Royden compactification

of G, and/e M(R), the Royden algebra of R. Here G is the closure of G

in the Royden compactification R* of /?. Note that a Borel subset £ <= dG

has a positive harmonic measure if and only if j~1(E) has a positive

harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore j(q) £ dG.

In view of Lemma 2 it is obvious that jiq) e Cl(dG), the closure being

taken in R*.

For each mTîl, um(q)=um(j(q))=l since j(q) e C\(dG)—dG. Thus by

virtue of integral representations of cu and um, it is not difficult to see that

Q<co^ßum on G, where ß=w(q). Therefore 0<.co^ßu on G and co is a

constant multiple of m on G as in §4.

This completes the proof of Theorem 1.

6. We turn to Riemannian «-manifolds for w^3. Our manifold will be

a submanifold of an infinitely sheeted covering manifold of the «-dimen-

sional Euclidean space Rn. Note that Rn and Ü share the properties

stated in Lemma 1.

For the construction replace the radial slits 2Â* i^úvú^i'1) by tne

hemispheres

Hhk = {8"x e Rn | |x| = 1 and x1 ^ 0}

where 8"x=(8"x1, • • • , 8"x") for x=(x\ • • • , xn). Denote by M the

infinitely sheeted covering manifold of Rn, constructed exactly in the

same way as in R. The counterparts for Lemma 2 and Theorem 1 now

read:

Lemma 3. The Riemannian n-manifold M carries no nonconstant

bounded harmonic functions. Every bounded harmonic function on the

submanifold
/V = {x€M||tt(x)|> 1}

attains the same value at all the points in M which lie over the same point
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in Rn if it continuously vanishes on

dN = {xeM|Kx)| = 1}.

Theorem 2. The Riemannian n-manifold N (n=3) carries a unique

(up to constant factors) H D~-minimalfunction but no H D-minimalfunctions.

The proofs of Lemma 3 and Theorem 2 are similar to those of Lemma 2

and Theorem 1 (cf. Kwon [3]).
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