A COUNTEREXAMPLE IN THE CLASSIFICATION OF OPEN RIEMANN SURFACES

YOUNG K. KWON

ABSTRACT. An HD-function (harmonic and Dirichlet-finite) ω on a Riemann surface R is called HD-minimal if $\omega > 0$ and every HD-function ω' with $0 \le \omega' \le \omega$ reduces to a constant multiple of ω . An HD^- -function is the limit of a decreasing sequence of positive HD-functions and HD^- -minimality is defined as in HD-functions. The purpose of the present note is to answer in the affirmative the open question: Does there exist a Riemann surface which carries an HD^- -minimal function but no HD-minimal functions?

An HD-function (harmonic and Dirichlet-finite) ω on a Riemann surface R is called HD-minimal if ω is positive and every HD-function ω' with $0 < \omega' \le \omega$ reduces to a constant multiple of ω on R. Let $\{\omega_n\}$ be a decreasing sequence of positive HD-functions on R. Then its limit is harmonic on R, and called an HD-function on R. HD-minimality can be defined as for HD-minimal functions. Denote by U_{HD} (resp. U_{HD} -) the class of open Riemann surfaces on which an HD-minimal (resp. HD-minimal) function exists (Constantinescu and Cornea [2]).

It is well known (Nakai [5], see also Sario-Nakai [7, p. 186]) that the inclusion $U_{HD} \subset U_{HD^{\sim}}$ holds. The purpose of the present paper is to show that the inclusion is strict. For Riemannian manifolds of dim ≥ 3 its strictness was established in Kwon [4]. For the sake of completeness we shall also give a somewhat simplified proof.

It should be noted that our reasoning is suggested by ingenious examples of Toki ([8], [9]); see also Sario [6]. The author is very grateful to the referee for his helpful suggestions.

1. First we demonstrate a hyperbolic Riemann surface which does not carry nonconstant positive harmonic functions (Toki [9]). For the sake of simplicity we follow the construction and the notation in Ahlfors and Sario [1, pp. 256-261].

Our surface will be obtained from the unit disk U:|z|<1 by identifying,

Received by the editors March 29, 1973.

AMS (MOS) subject classifications (1970). Primary 30A48.

Key words and phrases. HD-function, HD-minimal functions, HD⁻-function, HD⁻-minimal function, Dirichlet integral, Royden's compactification, Wiener's compactification, harmonic boundary, harmonic kernel, Riemannian n-manifold.

pairwise or cyclically, edges of infinitely many radial slits. For a slit $S = \{re^{ia} | 0 < a \le r \le b < 1\}$, set $S^+ = \{re^{i(\alpha+0)} | a \le r \le b\}$ and $S^- = \{re^{i(\alpha-0)} | a \le r \le b\}$. Two radial slits S_1 and S_2 are identified pairwise if S_1^+ is connected with S_2^- and S_1^- with S_2^+ . The radial slits S_1 , S_2 , \cdots , S_n are identified cyclically if S_1^+ is connected with S_2^- , S_2^+ with S_3^- , etc., and finally S_n^+ with S_1^- . Here we understand that all the slits extend between two concentric circles.

For a pair (h, k) of positive integers h, k, set $\mu = (2h-1)2^{k-1}$. With each μ we associate $2^{k+5\mu}$ radial slits, equally spaced and one being on the positive real axis, such that their end points lie on $|z| = r_{4\mu-2}$ and $|z| = r_{4\mu-1}$, where $\log r_{\mu} = -2^{-\mu}$ for all $\mu \ge 1$. A slit associated with $\mu = \mu(h, k)$ will be called of rank μ and type k. For each $k \ge 1$ denote by S_{ik} the sectors: $2\pi i \cdot 2^{-k} \le \theta \le 2\pi (i+1) \cdot 2^{-k}$, $0 \le i < 2^k$. The slits of type k on the rays $\theta = 2\pi i \cdot 2^{-k}$ will be identified cyclically. The remaining slits of the same type are identified pairwise within each sector S_{ik} , symmetrically with respect to its bisecting ray. Let \widetilde{U} be the resulting Riemann surface.

LEMMA 1. The Riemann surface \tilde{U} is hyperbolic, but every positive harmonic function on \tilde{U} reduces to a constant.

For a proof we refer the reader to Ahlfors and Sario [1, pp. 256-261].

2. Denote by U_0 the Riemann surface obtained from \tilde{U} by deleting all the radial slits

$$\sum_{n}^{\nu} = \{ re^{i\theta} \mid -2^{-4\mu} \le \log r \le -2^{-4\mu-1}, \, \theta = 2\pi\nu \cdot 2^{-4\mu} \}$$

for $1 \le \nu \le 2^{4\mu}$. Let $\{U_0(l)\}_1^{\infty}$ be a sequence of duplicates of U_0 . For each fixed $k \ge 1$ and subsequently for $j \ge 0$ and $1 \le l \le 2^{k-1}$, join $U_0(l+2^kj)$, crosswise along all the slits $\sum_{hk}^{\nu} (h \ge 1)$, with $U_0(l+2^{k-1}+2^kj)$ (cf. Sario [6]). The resulting Riemann surface R is an infinitely sheeted covering surface of \widetilde{U} . Let $\pi: R \to \widetilde{U}$ be the natural projection.

LEMMA 2. The Riemann surface R carries no nonconstant bounded harmonic functions. Furthermore every bounded harmonic function u on the subregion

$$G = \{x \in R \mid |\pi(x)| > r_1\}$$

takes the same value on $\pi^{-1}(z)$ for each $z \in \tilde{U}$ whenever it continuously vanishes on the relative boundary

$$\partial G = \{x \in R \mid |\pi(x)| = r_1\},\,$$

where $\log r_1 = -2^{-1}$.

For the proof the reader is referred to Sario-Nakai [7, pp. 178–181].

3. For each integer $l \ge 1$, consider the subset of R:

$$R_{l} = \left[\bigcup_{j=1}^{l-1} G_{j}\right] \cup \left[\bigcup_{j=l}^{\infty} U_{0}(j)\right]$$

where $G_j = \{x \in U_0(j) | |\pi(x)| > r_1\}$. It is obvious that $G = \bigcup_{j=1}^{\infty} G_j$ and the Riemann surface G is an infinitely sheeted covering surface of the "annulus" $\{z \in \widetilde{U} | |z| > r_1\}$.

We are now ready to state our main result (cf. Kwon [4]):

THEOREM 1. The Riemann surface G carries a unique (up to constant factors) HD^{\sim} -minimal function but no HD-minimal functions. Thus the inclusion $U_{HD} \subset U_{HD^{\sim}}$ is strict for Riemann surfaces.

The proof will be given in §§4–5. For convenience we shall follow the notation and terminology in Sario-Nakai [7]. All results needed concerning the Royden and Wiener compactifications can be found in Sario-Nakai [7, Chapters 3 and 4].

4. For each $m \ge 1$ choose $u_m \in HBD(R_m)$, the class of bounded Dirichlet-finite harmonic functions on R_m , such that $0 \le u_m \le 1$ on R, $u_m = 0$ on $\bigcup_{j=1}^{m-1} [U_0(j) - G_j]$, and $u_m = 1$ on the Royden harmonic boundary of R. In view of the fact that R is hyperbolic and carries no nonconstant bounded harmonic functions, the Wiener harmonic boundary Δ_N and the Royden harmonic boundary Δ_M of R consist of single points. Therefore the maximum principle yields

$$u_m(x) \ge 1 - (\log|\pi(x)|)/\log r_1$$

on G. Clearly $u_m \ge u_{m+1}$ and therefore the sequence $\{u_m\}$ converges, uniformly on compact subsets of G, to an HD^{\sim} -function u on G. It is obvious that 0 < u < 1 on G and $u \equiv 0$ on R - G.

We claim that the function u is HD^{\sim} -minimal on G. In fact let $v \in HD^{\sim}(G)$, the class of HD^{\sim} -functions on G, satisfy $0 < v \le u$ on G. Since

$$0 \le \limsup_{x \in G, x \to y} v(x) \le \limsup_{x \in G, x \to y} u(x) = 0$$

for every $y \in \partial G$, the function v can also be continuously extendable to R with $v|R-G\equiv 0$. Again by the maximum principle we have $v=\alpha u$ on G, where $\alpha=\lim_{x\to\Delta_N}v(x)$ the limit being taken in the Wiener compactification of R.

5. Suppose that the function u is HD-minimal on G. Then u must have a finite Dirichlet integral over G. But u has a continuous extension to $G \cup \partial G$ with $u \mid \partial G \equiv 0$. Therefore u must attain the same value at all the points in G which lie over the same point in \widetilde{U} , a contradiction.

Finally it remains to show that every HD^{\sim} -minimal function on G is a constant multiple of u. Let ω be another HD^{\sim} -minimal function on G. Choose a point $q \in \Delta_{M,G}$, the Royden harmonic boundary of G, such that q has a positive harmonic measure and $\limsup_{x \in G, x \to q'} \omega(x) = 0$ for almost all $q' \in \Delta_{M,G} - \{q\}$ relative to a harmonic measure μ for G. Then ω has an integral representation in the form:

$$\omega(x) = \int_{\Delta_{M,G}} P(x, y) \bar{\omega}(y) d\mu(y)$$

on G, where P(x, y) is the harmonic kernel and $\bar{\omega}(y) = \limsup_{x \in G, x \to y} \omega(y)$ for $y \in \Delta_{M,G}$ (Nakai [5]; see also Sario-Nakai [7, p. 183]).

Let $j: G^* \to \overline{G} \subset R^*$ be the subjective continuous mapping such that j(x) = x on G and f(x) = f(j(x)) for all $x \in G^*$, the Royden compactification of G, and $f \in M(R)$, the Royden algebra of R. Here \overline{G} is the closure of G in the Royden compactification R^* of R. Note that a Borel subset $E \subset \partial G$ has a positive harmonic measure if and only if $j^{-1}(E)$ has a positive harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore $j(q) \notin \partial G$. In view of Lemma 2 it is obvious that $j(q) \in Cl(\partial G)$, the closure being taken in R^* .

For each $m \ge 1$, $u_m(q) = u_m(j(q)) = 1$ since $j(q) \in Cl(\partial G) - \partial G$. Thus by virtue of integral representations of ω and u_m , it is not difficult to see that $0 < \omega \le \beta u_m$ on G, where $\beta = \bar{\omega}(q)$. Therefore $0 < \omega \le \beta u$ on G and ω is a constant multiple of u on G as in §4.

This completes the proof of Theorem 1.

6. We turn to Riemannian *n*-manifolds for $n \ge 3$. Our manifold will be a submanifold of an infinitely sheeted covering manifold of the *n*-dimensional Euclidean space R^n . Note that R^n and \tilde{U} share the properties stated in Lemma 1.

For the construction replace the radial slits $\sum_{hk}^{\nu} (1 \le \nu \le 2^{4\mu})$ by the hemispheres

$$H_{hk} = \{8^{\mu}x \in R^n \mid |x| = 1 \text{ and } x^1 \ge 0\}$$

where $8^{\mu}x = (8^{\mu}x^1, \dots, 8^{\mu}x^n)$ for $x = (x^1, \dots, x^n)$. Denote by M the infinitely sheeted covering manifold of R^n , constructed exactly in the same way as in R. The counterparts for Lemma 2 and Theorem 1 now read:

LEMMA 3. The Riemannian n-manifold M carries no nonconstant bounded harmonic functions. Every bounded harmonic function on the submanifold

$$N = \{ x \in M \mid |\pi(x)| > 1 \}$$

attains the same value at all the points in M which lie over the same point

in Rⁿ if it continuously vanishes on

$$\partial N = \{ x \in M \mid |\pi(x)| = 1 \}.$$

THEOREM 2. The Riemannian n-manifold N ($n \ge 3$) carries a unique (up to constant factors) HD^{\sim} -minimal function but no HD-minimal functions.

The proofs of Lemma 3 and Theorem 2 are similar to those of Lemma 2 and Theorem 1 (cf. Kwon [3]).

REFERENCES

- 1. L. Ahlfors and L. Sario, *Riemann surfaces*, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N.J., 1960. MR 22 #5729.
- 2. C. Constantinescu and A. Cornea, Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J. 13 (1958), 169-233. MR 20 #3273.
- 3. Y. K. Kwon, Strict inclusion $O_{HB} < O_{HD}$ for all dimensions, Kyungpook Math. J. (to appear).
- 4. ——, HD~-minimal but no HD-minimal, Pacific J. Math. (to appear).
- 5. M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J. 17 (1960), 181-218. MR 23 #A1028.
- 6. L. Sario, Positive harmonic functions. Lectures on functions of a complex variable, Univ. Michigan Press, Ann Arbor, Mich., 1955, pp. 257-263. MR 19, 739.
- 7. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der Math. Wissenschaften, Band 164, Springer-Verlag, New York and Berlin, 1970, 446 pp. MR 41 #8660.
- 8. Y. Tôki, On the classification of open Riemann surfaces, Osaka Math. J. 4 (1952), 191-201. MR 14, 864.
- 9. ——, On examples in the classification of Riemann surfaces. I, Osaka Math. J. 5 (1953), 267-280. MR 15, 519.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712