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A COUNTEREXAMPLE IN THE CLASSIFICATION
OF OPEN RIEMANN SURFACES

YOUNG K. KWON

ABSTRACT. An HD-function (harmonic and Dirichlet-finite)
w on a Riemann surface R is called HD-minimal if @>0 and every
HD-function o’ with 0 S’ = reduces to a constant multiple of w.
An HD"-function is the limit of a decreasing sequence of positive
HD-functions and HD™-minimality is defined as in HD-functions.
The purpose of the present note is to answer in the affirmative the
open question: Does there exist a Riemann surface which carries an
HD™-minimal function but no A D-minimal functions?

An HD-function (harmonic and Dirichlet-finite) w on a Riemann
surface R is called HD-minimal if w is positive and every HD-function w’
with 0<w’ = reduces to a constant multiple of w on R. Let {w,} be a
decreasing sequence of positive HD-functions on R. Then its limit is
harmonic on R, and called an HD -function on R. HD~-minimality
- can be defined as for HD-minimal functions. Denote by Ugp (resp.
Upp~) the class of open Riemann surfaces on which an HD-minimal
(resp. HD -minimal) function exists (Constantinescu and Cornea [2]).

It is well known (Nakai [5], see also Sario-Nakai [7, p. 186]) that the
inclusion Ugyp< Upyp- holds. The purpose of the present paper is to
show that the inclusion is strict. For Riemannian manifolds of dim=3
its strictness was established in Kwon [4]. For the sake of completeness we
shall also give a somewhat simplified proof.

It should be noted that our reasoning is suggested by ingenious examples
of Toki ([8], [9]); see also Sario [6]. The author is very grateful to the
referee for his helpful suggestions.

1. First we demonstrate a hyperbolic Riemann surface which does not
carry nonconstant positive harmonic functions (Toki [9]). For the sake
of simplicity we follow the construction and the notation in Ahlfors and
Sario [1, pp. 256-261].

Our surface will be obtained from the unit disk U:|z[<1 by identifying,
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pairwise or cyclically, edges of infinitely many radial slits. For a slit
S={re”|0<a=r=b<1}, set St={re'**V|a<r=b} and S-={re'*"Ja=
r=b}. Two radial slits S, and S, are identified pairwise if S7 is connected
with Sz and S7 with S3. The radial slits S}, S,, - - -, S, are identified
cyclically if Si is connected with S;, S5 with S5, etc., and finally S7 with
S7. Here we understand that all the slits extend between two concentric
circles.

For a pair (h, k) of positive integers A, k, set u=(2h—1)2%1. Witheach u
we associate 2*** radial slits, equally spaced and one being on the positive
real axis, such that their end points lie on |z|=r,,_, and |z|=r,,_,, Wwhere
log r,=—27* for all u=1. A slit associated with u=u(h, k) will be called
of rank x and type k. For each k21 denote by S, the sectors: 27i - 27* <
0=2n(i+1)-27%, 0<i<2*. The slits of type k on the rays 6=2ni-2"*
will be identified cyclically. The remaining slits of the same type are
identified pairwise within each sector S;;, symmetrically with respect to
its bisecting ray. Let I be the resulting Riemann surface.

LEMMA 1. The Riemann surface U is hyperbolic, but every positive
harmonic function on U reduces to a constant.

For a proof we refer the reader to Ahlfors and Sario [1, pp. 256-261].

2. Denote by U, the Riemann surface obtained from U by deleting
all the radial slits

z = {re’| —2* <logr < —27%7, 0 =2m - 27%}

hk
for 1=Sv=2%. Let {Uy(D)};° be a sequence of duplicates of U,. For each
fixed k=1 and subsequently for j=0 and 1=/=2%1, join Uy(/+2%)),
crosswise along all the slits >3, (h=1), with Ug(/+2%142%) (cf. Sario
[6]). The resulting Riemann surface R is an infinitely sheeted covering
surface of U. Let 7: R—U be the natural projection.

LEMMA 2. The Riemann surface R carries no nonconstant bounded
harmonic functions. Furthermore every bounded harmonic function u on the
subregion

G = {xeR||m(x)| > ry}
takes the same value on w(z) for each z € U whenever it continuously
vanishes on the relative boundary

0G={x e R||n(x)| = r;},
where log ry=—2"1,

For the proof the reader is referred to Sario-Nakai [7, pp. 178-181].
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3. For each integer /=1, consider the subset of R:

-[Ue] v [Guo]

where G;={x € Uy(j)| |=(x)|>r}. It is obvious that G=|J;°; G, and the
Riemann surface G is an infinitely sheeted covering surface of the
“annulus” {z € U||z|>r,}.

We are now ready to state our main result (cf. Kwon [4]):

THEOREM 1. The Riemann surface G carries a unique (up to constant
factors) HD -minimal function but no HD-minimal functions. Thus the
inclusion Uy p < Uy p~ is strict for Riemann surfaces.

The proof will be given in §§4-5. For convenience we shall follow the
notation and terminology in Sario-Nakai [7]. All results needed con-
cerning the Royden and Wiener compactifications can be found in Sario-
Nakai [7, Chapters 3 and 4].

4. Foreachm=1 chooseu,, € HBD(R,,), the class of bounded Dirichlet-
finite harmonic functions on R,,, such that 0<u,,<1 on R, u,=0 on

,;;‘ [Uo(j)—G;,], and u,=1 on the Royden harmonic boundary of R.
In view of the fact that R is hyperbolic and carries no nonconstant
bounded harmonic functions, the Wiener harmonic boundary Ay and
the Royden harmonic boundary A, of R consist of single points. Therefore
the maximum principle yields

Un(x)Z 1= (loglm(x)])/log r,

on G. Clearly u,=u,,, and therefore the sequence {u,} converges,
uniformly on compact subsets of G, to an HD -function u on G. It is
obvious that 0<u<1 on G and u=0 on R—G.

We claim that the function u is HD -minimal on G. In fact let
v € HD"(G), the class of HD -functions on G, satisfy 0<v=<u on G.
Since

0 =< limsup v(x) = limsup u(x) =0
zeG, 2y zeG,z—Y
for every y € G, the function v can also be continuously extendable to
R with 9]R—G=0. Again by the maximum principle we have v=au
on G, where a=lim,_.,  v(x) the limit being taken in the Wiener compacti-
fication of R.

5. Suppose that the function u is HD-minimal on G. Then u must have
a finite Dirichlet integral over G. But u has a continuous extension to
GUOAG with u|dG=0. Therefore u must attain the same value at all
the points in G which lie over the same point in U, a contradiction.
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Finally it remains to show that every HD -minimal function on G is
a constant multiple of u. Let w be another HD™-minimal function on G.
Choose a point g € Ay g, the Royden harmonic boundary of G, such
that ¢ has a positive harmonic measure and lim SUp e,z @(x)=0 for
almost all ¢’ € Ayr,g—{g} relative to a harmonic measure u for G. Then
o has an integral representation in the form:

w(x) = L P(x, ))d(y) du(y)

on G, where P(x, y) is the harmonic kernel and @(y)=lim supeg, 5.y ©(y)
for y € Ay, ¢ (Nakai [5]; see also Sario-Nakai [7, p. 183]).

Let j:G*—>G < R* be the subjective continuous mapping such that
J(x)=x on G and f(x)=f(j(x)) for all x € G*, the Royden compactification
of G, and f € M(R), the Royden algebra of R. Here G is the closure of G
in the Royden compactification R* of R. Note that a Borel subset E < 0G
has a positive harmonic measure if and only if j~*(E) has a positive
harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore j(g) ¢ 9G.
In view of Lemma 2 it is obvious that j(q) € C1(0G), the closure being
taken in R*.

For each m21, u,(q)=u,(j(g))=1 since j(q) € ClI(0G)—0G. Thus by
virtue of integral representations of w and u,,, it is not difficult to see that
0<w=pu,, on G, where f=a(q). Therefore 0<w=pu on G and w is a
constant multiple of # on G as in §#4.

This completes the proof of Theorem 1.

6. We turn to Riemannian n-manifolds for n=3. Our manifold will be
a submanifold of an infinitely sheeted covering manifold of the n-dimen-
sional Euclidean space R". Note that R" and U share the properties
stated in Lemma 1.
For the construction replace the radial slits >, (1=v=2%) by the
hemispheres
Hy = {8x€R*||x| =1 and x! Z 0}

where 8¥x=(8"x!,---,8x") for x=(x!,---,x"). Denote by M the
infinitely sheeted covering manifold of R", constructed exactly in the
same way as in R. The counterparts for Lemma 2 and Theorem 1 now
read:

LemMMA 3. The Riemannian n-manifold M carries no nonconstant
bounded harmonic functions. Every bounded harmonic function on the
submanifold

N={xeM||m(x) > 1}

attains the same value at all the points in M which lie over the same point
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in R" if it continuously vanishes on
ON = {xeM||n(x)| =1}.

THEOREM 2. The Riemannian n-manifold N (nZ3) carries a unique
(up to constant factors) HD™-minimal function but no H D-minimal functions.

The proofs of Lemma 3 and Theorem 2 are similar to those of Lemma 2
and Theorem 1 (cf. Kwon [3]).
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