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MONOTONE AND COMONOTONE APPROXIMATION

E.  PASSOW AND L. RAYMON

i
Abstract. Jackson type theorems are obtained for monotone

and comonotone approximation. Namely

(i) If/(;r) is a function such that the kth difference of / is =ï0

on [a, b] then the degree of approximation of/by nth degree poly-

nomials with kth derivative ^0 is 0[a>(/; l/«1-*)] for any e>0,

where a>(f; <5) is the modulus of continuity oí fon [a, b].

(ii) If f(x) is piecewise monotone on [a, b) then the degree of

approximation of/ by nth degree polynomials comonotone with /

is 0[o(/; I/«1"*)] for any e>0.

The degree of approximation of a real function fie C[a,b] by a space

of functions & is

£(/;^) = inf||/-P||,

where the norm is the ordinary sup norm. Jackson's classic theorem states

that the degree of approximation of a function fie C[a,b] by the space

0>n of algebraic polynomials of degree ^n satisfies

(1) Eifi; 0>n) = E„if) <: Ctoif; 1/n),

where C>0 is a constant not depending on n or/ and a>(f; 8) is the

modulus of continuity off. It is natural to ask to what extent the degree

of approximation to /is affected by replacing the space of approximating

functions ¿?n by another (restricted) space ^jf<=áP„. In this article we

address ourselves to two related questions of this type, (A) monotone

approximation and (B) comonotone approximation.

(A) Monotone approximation. How closely can one approximate a

monotone function/on [a, b] by a polynomial that is monotone on [a, b]1

I.e., what is the degree of approximation off by the space of polynomials

of degree ^w that are monotone on [a, b]1 More generally, if !?n,k

denotes the space of polynomials P of degree ^« satisfying Pik)(x)iZ0

on [a, b], then what is the degree of approximation £(/; 0>n,k)=En.k(f)

where/(x) is a function whose kth difference Afc/is always ^0 on [a, b]l
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These questions were first raised by Shisha in [5], where he proved that

iffw(x)=0 andf{p)(x) e Lip 1, where l=k^p, then

En.k(f) = C(W4r*+l(i> - a)**1

(2)

k\fi(n + l-j)]~
i=k -I

<        Gg.fc

- (n - p)p-k+1

Roulier [4] has obtained results that represent some improvement over

Shisha's in certain cases where k=p>2. If /is not assumed to be in

Cp for any/»_ 1, the question of an estimate on the order of magnitude of

£nJfc remains. For the case k=l, Lorentz and Zeller [1] have obtained a

very satisfying result. They have shown that for a monotone function/

En.Af) - 0[œ(f; I In)].

This is the same order of magnitude as that given by Jackson's theorem

for "unrestricted" approximation (1). In Theorem 3 we are able to show

that if the kth difference ÙAf of/is _0, then for every £>0

EnAf) = o[œ(f; l/n1'*)].

(B) Comonotone approximation, f will be called piecewise monotone

if it has only a finite number of local maxima and minima in [a, b].

The local maxima and minima off in [a, b] together with the endpoints

a, b will be referred to as the peaks off. If g is nondecreasing on the sub-

intervals of [a, b] on which / is nondecreasing, and nonincreasing on

those subintervals on which/is nonincreasing, then g is said to be comono-

tone with/. Given a piecewise monotone function/(x) let ¿?%(f) denote

the space of all polynomials of degree _« that are comonotone with/

on [a, b]; let £*(/) denote the comonotone degree of approximation

off; i.e.,

£„*(/) = En[f; 0>l(f)].

By Jackson's theorem En(f) = 0[oj(f; \¡n)]. What is the order of magni-

tude of £*(/)? Newman, Passow and Raymon [2] have obtained results

of a modified nature. They have shown that for n sufficiently large there

is P e í?n such that ||/— £||<Cw(/; 1/«) where/and £ are comonotone

except in certain neighborhoods (whose diameters tend to zero with n)

of the peaks. Also, Passow and Raymon have obtained an estimate for

"perfectly" comonotone approximation for functions in Cv [3]: If f(x)

has k peaks and/e Cp[a, b] with p>k and with/'"' e Lip 1 [a, b], then

(3) E*n(f) <(b- af+\Cln)
V-k-l

whenever «>2/>, where C is independent of«, p,f and k.
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Let S be a set of functions. We shall use the following notation :

E*n(S) = sup E*n(f).
feS

Theorem 1 relates the comonotone degree of approximation E*(f) of an

arbitrary function / to £*(S) where S is a class of functions satisfying

certain smoothness conditions. Theorem 2 is proved easily from (3) and

Theorem 1.

Theorem 1.   Let Sp denote the set of functions g in Cp[a, b] such

that giJ>) is a contraction on [a, b] (i.e., w(g(ï>); ô)^ô for all <3>0). Let

a=x0<.Xx<- • -<xk=b be the peaks of a piecewise monotone function

f(x) on  [a,b]; let á^min^g^-x^l.  Let X=Xn=[E*n(Sp)]x'^x).

Then

E*n(f) ̂  P^cotf; Xn)
whenever pXn<.è.

Proof.   Let/*(x) be defined on [a, b+pX] as follows:

f*(x) =/(*,),       Xi < x < Xi +pX, i » 1,2, • • •, k,

= f(x),        for all other x.

f*(x) is comonotone with/(x) on [a, b]. In addition, the monotonicity

of/*(x) on [*<_!, Xi] extends to [x(-1, xt+pX], i=l, 2, ■ • • , k. From the

definition off*(x) and by the sublinear property of the modulus of con-

tinuity we deduce

(4) co(f*;X)^co(f;PX)^pco(f;X),

and

(5) \\f-f*\\<:w(f;pX)iPco(f;X).

Let

*to = ¿I '"        f*(t)dtdtxdt2---dtP.
A JX Jtv Jlp-1 Jtl

We shall show that/and g are comonotone. If/(x) is nondecreasing

on [Xi_x, x(], then f*(x) is nondecreasing on [xrf_j, xt+pX] and

gx(x)=jx+ f*it)dt is nondecreasing on [x^, Xi+ip-l)X]; g2(x)=

)l+X }l\+''f*(t)dt dtx is nondecreasing on [x¿_1; x¿+(p—2)X]; Iterating the

procedure p times, we conclude that g(x) is nondecreasing on [*,_,, x{].

Similarly, if/(x) is nonincreasing on [x(_x, x(], then g(x) is nonincreasing

on the same interval, and g(x) is comonotone with/Ox).

Applying the Fundamental Theorem of Calculus p times to g(x) we
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conclude that

A        ¿To \jJ Jx+lp-i)X

Then, since/* is continuous except at a finite number of points,

lgD+1,(x)| = ~«»(/*, A) = ^ co(f; X),   by (4).

Hence Xp+1g(x)jp2pw(f; X) e Sv. Then there is some polynomial Q(x) e

@t(f) such that

Up+1g(x)lp2pa>(f; X) - Q(x)\\ ̂  E*n(Sp) = Xp+1.

Then, if P(x)=p2pco(f; X)Q(x)¡Xp+1, P e ^>*(f) and

(6) \\g(x)-P(x)\\<kP2po>(f;X).

Also

lg-/*ll =
1      r-x+x rtv+x       rti+x

T¿I ■•• \f*0)-f*(x)]dtdt1---dt)
X Jx        Jtp Jtl

(7) &»(/*; pX) y r»*-* n*+xçx+x çtv+x       rt

X"+ \\jx      Jtl, Jtl

= œ(f; p'X) = /«,(/; X).

Now, from (5), (6) and (7), we have

K(f) = U-P\\ = 11/-/*« + 11/* - g\\ + Il g - £11
<i(p + p2 + p2>(/; A) ̂  p'l^toU; X),

and the proof is complete.

Theorem 2. If f(x) is a piecewise monotone function on [a, b], then

for any e>0 there is some constant bkc>0 such that for n sufficiently

large E*n(f)=bk.Mf^lnl-c); i.e.,

E*n(f) = o[co(f;]ln1-')].

Proof. Suppose/(x) has k peaks. By (3), £*(5P)=(b-a)k+1(Cln)p-k-1

whenever n>2p. If p is chosen so large that (/>—k— l)/(/» + l)>l— e,

then Xn=[Et(Sp)]1ilP+1)=o(lln1~c), and Theorem 2 then follows from

Theorem 1.

Theorem 3. Iff(x) is a function such that for all x the kth difference

Afc/(x)_0 on [a, b], then for any e>0 there is some constant dkt>0 such

that for n sufficiently large

En.k(f) Ú dk.Mf; l/"1-1);   ¡-e-,   £».*(/) - o[co(f; l/n1'*)].
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Proof.   Let
rx+ii rtv+tc+x /"rp+t-i+A      rti+x

g(x)=l/A^+1 •••        f(t)dtdtx---dtp+k,
Jx       J ts+k       J ij+t-1 Jtl

where p and X>0 will be specified later. Then

(8) \\g -/|| ^ co[f; (p+k + l)X] ̂ ip+k + l)u>if; X).

Applying the Fundamental Theorem of Calculus to gix) k times,

i     rx+x rt,+x      rtl+xkkf(t)<»>    ™-M L "Í *£***• ••<
Since the integrand in (9) is assumed nonnegative, g<k\x)^.Q. Moreover,

\gt*+k+vix)\^2p+>'ojif; X)IXp+*+x. Hence if hix)=X"+k+igix)l2p+kcoif; X),

then hix) e Sp+k; then by Shisha's theorem (2) there is a polynomial

Qix) e ^n.k such that

En.Áh) ̂  \\h - OH ̂  CPik\(n -p)*+K

Therefore, letting P(x)=2p+kœ(f; X)Q(x)jXp+k+l, P e 0>n,k and

(10) || g - P|| ^ Cp,k2p+kco(f; X)¡X»***H.n - p)**1.

Hence, by (8) and (10),

II/-PII ál/-¿I +II/J--PII
< o)(/; X)[p + k + 1 + CP,k2p+kl(n - p)p+xXp+k+x].

Choose p so large that (/? + l)/(/?-|-£ + l)>l— e, and then choose

A=(n-/>)-<î>+1)'(iH-*+i). Then

||/- ¿>|| ̂  4.£«(/; I/«1-)   and    £„.*(/) = o[o>(/; I/n»-)J.     Q.E.D.
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