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NON-n-MUTUALLY APOSYNDETIC CONTINUA

LELAND E. ROGERS

ABSTRACT. Relationships are shown between non-n-mutual
aposyndesis and C-cutting in compact metric continua, including
results analogous to those of F. B. Jones in the case of nonaposyn-
desis.

1. Introduction. In [2], F. Burton Jones discussed nonaposyndesis
in compact metric continua, including certain relationships between
nonaposyndesis and both cut points and indecomposability.

E. J. Vought [5] later proved the n-aposyndetic versions of many of
Jones’ results, as did C. L. Hagopian in the case of mutual aposyndesis
[2]. This paper is concerned with the analogous results in the case of
n-mutual aposyndesis [4], a generalization of both r-aposyndesis and
mutual aposyndesis.

2. Definitions. A continuum is a nondegenerate closed connected
set. The interior of a set 4 will be denoted by 4°. If n=2 and 4 is an n-
point subset of the continuum M, then M is n-mutually aposyndetic at A
if there exist n disjoint subcontinua of M, each containing a point of 4
in its interior. If M is n-mutually aposyndetic at each n-point set, then
M is said to be n-mutually aposyndetic. For x € M and n Z 2, if there
exists an n-point set 4 containing x such that M is not n-mutually apo-
syndetic at A4, then M is non-n-mutually aposyndetic at x. For n=2, if
M is non-n-mutually aposyndetic at each of its points, then M is torally
non-n-mutually aposyndetic. If M is n-mutually aposyndetic at no n-point
set, then M is strictly non-n-mutually aposyndetic. For n=2 we obtain
the notions of mutual aposyndesis, total nonmutual aposyndesis, and
strict nonmutual aposyndesis [2]. A set D is said to cut x from y in M if
D intersects every subcontinuum of M which contains {x, y}. A finite
set{py, - * * , pi}is said to C-cut x from y if for each collection {C,, - - - , C;}
of disjoint subcontinua such that p, € C; (for i=k), U¥ C, intersects each
subcontinuum containing {x, y}. For k=1 we obtain Hagopian’s notion
of a single point C-cutting [2, p. 618].
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3. Preliminary theorems. Theorems 1 and 2 correspond to Jones’
Theorems 1 and 4 [3].

THEOREM 1. Suppose that M is a regular Hausdorff continuum, n=2,
and that (1) for each iZ1, xy;, " -, x,; are distinct points such that M
is not n-mutually aposyndetic at {x,.,;[ j=n}, and (2) yy, - -, y, are distinct
points of M such that for each j<n, the sequence x;;, X, * * - converges to
y;. Then M is not n-mutually aposyndetic at {y;| j<n}.

PrOOF. Suppose that there are disjoint subcontinua H,,---, H,
such that for each j<n, y; € Hj. For each j=n, let k; be an integer such
that if i=k; then x,; € H}. Let k'=max{k,|j=n}. Then for each j=<n,
x; € Hj. Hence M is n-mutually aposyndetic at {x,|j<n}, contrary to
hypothesis. Thus the conclusion follows.

THEOREM 2. Let nZ2. The set of points at which the compact metric
continuum M is non-n-mutually aposyndetic is an F, set.

Proor. For each positive integer j, let A; be the set of all points x € M
such that there are distinct points p;, -, p,_; in M—{x} satisfying
the two properties that the distance between any pair in {x} U{p,|iSn—1}
is at least 1/f, and that M is not n-mutually aposyndeticat {x} U{p |i<n—1}.
It follows from Theorem 1 that each A, is closed. Finally we observe that
U7 A; is exactly the set of points at which M is non-n-mutually aposyn-
detic. This completes the proof

DEefINITION. For n22 and an (n—1)-point set 4 in the continuum M,
D(A) denotes the set of all points x such that either x € 4 or M is not
n-mutually aposyndetic at 4 U{x}.

It follows immediately from the definition that M is n-mutually aposyn-
detic if and only if for each (n—1)-point set A, D(4)=A. By Theorem 1,
the set D(A) is always closed as is the case with the “aposyndetic’ analog
L, [3, p. 405]; but while L, is always connected, D(A4) need not be connec-
ted. The following example shows that it may even be totally disconnected.

EXAMPLE (FOR n=2). An (n—1)-mutually aposyndetic continuum which
is not n-mutually aposyndetic on exactly one n-point set.

The continuum M will be constructed in E3. For each i=1 let T,=
[0, 112x{1/i}, and define T,=[0, 1]*x{0}. Let &y, - - -, b,,_, be distinct
points of {I}x [0, 1]x{0}. For each j=<2n—2, let C;={1}x {my(b;)} %
[0, 1] (7 is the projection map onto the y-axis). Thus each C; meets each
T, and C;NT,={b,}. Let T=(Ug THU(UCy). Let yy, -+, y,y be
distinct points of the (two-dimensional) interior of 7}, and x a point of
To—{b,[iS2n—2}. Let A,,- -, Ay, , be arcs lying in the (two-dimen-
sional) interior of T;, each pair intersecting in exactly the set {y,-|i§n— 1}
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and no arc crossing another. For each j=2n—2, let S; be 2 homeomorph of
[0, 1] such that S,.onT={x}U{b,.|i¢j} UA;. For j=2n—2 and k21, let
S;x be a homeomorph of [0, 11 such that S;,NT={x}U{b,ix/} and
such that for each j, the sequence S;;, Sj., - - - converges to S,. Further-
more, we assume that the S;,’s are chosen to be disjoint in the complement
of T. Finally we let

M=U{S;|jE2n—2,kZ0UT.

Then M is (n—1)-mutually aposyndetic, and M is not n-mutually aposyn-
detic at {x}U{ y,-|i§n—l}, but M is n-mutually aposyndetic at any
other n-point set.

4. Cut point theorems. A compact metric continuum which is totally
nonaposyndetic (i.e., aposyndetic at none of its points) must contain a
cut point [3, p. 409]. In the case of total non-n-aposyndesis, there must
exist an n-point set which cuts [1, p. 102]. However the corresponding
result in the case of mutual aposyndesis does not hold even in the plane,
since the example of [4, p. 241] can be observed to be a totally nonmutually
aposyndetic continuum in which no point cuts. In fact even strict non-
mutual aposyndesis does not guarantee existence of a cut point [2, p. 622].
However, the more general type of cutting, C-cutting, is guaranteed in
the event of total nonmutual aposyndesis [2, p. 619]. This result is ex-
tended to the general case of n2=2 in a corollary to the following theorem.

THEOREM 3. Suppose n=2. Let U be an open set in the compact metric
continuum M, and L be a subset of M such that for each x € U there exists
an (n—1)-point set A< L—{x} such that M is not n-mutually aposyndetic
at {x}UA. Then for each r € M— L, there exists a point s € U such that,
for each (n—1)-point set BUL—{s} such that M is not n-mutually aposyn-
detic at {s}\UB, the set B must C-cut r from s.

PROOF. Let r € M—L. Suppose that the theorem fails and that &
denotes the collection of unions of n—1 disjoint continua missing r,
each containing a point of L in its interior.

Let s € U. Then there is an (n—1)-point set A< L—{s} such that M
is not n-mutually aposyndetic at {s}\U4 but A does not C-cut r from s.
Thus there are disjoint subcontinua C,,---, C,_, each containing a
point of A4 in its interior, and a continuum 7 such that {r, s}< T and TN
(U™ C,)=@. Hence neither r nor s is in Ui~ C;. Since M is not n-
mutually aposyndetic at sUA, it follows that M must not be aposyndetic
at s with respect to |J;™* C,. Note that U™ C; is an element of the
collection 9.
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Thus we have that for each s € U, M is not aposyndetic at s with
respect to some member of & which does not cut r from s. But by [1,
p. 101], there is a point s € U such that the associated |JC; does cut r
from s. This contradiction concludes the proof of the theorem.

For n=2, Theorem 3 takes the form of Theorem 5 of [2, p. 618].

COROLLARY 1. Let n22. If no (n—1)-point set C-cuts in the compact
metric continuum M, then M is n-mutually aposyndetic at each point of a
dense G set.

ProOF. Let D be the set of points at which M is n-mutually aposyn-
detic. By Theorem 2, M— D is an F, set; so D is a G; set. Suppose that
D is not dense in M. Let W be an open subset of M— D. For each positive
integer k, let A4, denote the set of all points x € W such that there exists
an (n—1)-point set B< M—{x} with the distance between any pair of
points in {x} UB not less than 1/k, and with M not n-mutually aposyndetic
at {x}UB. By Theorem 1, each A, is closed relative to W. Note that
W=Jx-1 4;. By the Baire category theorem, there is an integer k’
such that A4,. has interior. Let y € A;. and 6>0 such that <1/k’ and
N(y, 0)< Ay [the open ball of radius 4 and center at x is denoted by
N(x,d)]. Let r e N(y, 6/2)—N(y, 6/4), and L=M—{r}. Then for each
x € N(y, 6/4), there is an (n—1)-point set B M—N(x, 1/k’) such that
M is not n-mutually aposyndetic at {x} UB, and since the distance from
x to r is at most 36/4 and 6=<1/k’, we see that B lies in (M —{r})—{x}
[which equals L—{x}]. Then by Theorem 3, there is a point s € N(y, 6/4)
such that if B is an (n—1)-point set in L—{s} and M is not n-mutually
aposyndetic at {s} UB, then B must C-cut r from s. Since s € 4,., there
does exist an (n—1)-point set B M —N(s, 1/k’) [which is contained in
(M—{r})—{s}=L—{s}] such that M is not n-mutually aposyndetic
at {s}UB, and consequently B must C-cut r from s. This contradiction
concludes the proof.

COROLLARY 2. Suppose n=2. If the compact metric continuum M
is totally non-n-mutually aposyndetic, then M contains an (n— 1)-point
set which C-cuts.

The next theorem is the n-mutual aposyndesis version of Theorem 17
of 3, p. 412].

THEOREM 4. Let n=2. Suppose the compact metric continuum M is
totally non-n-mutually aposyndetic and contains only one (n—1)-point
set N which C-cuts. Then for each x € M—N, M is not n-mutually aposyn-
detic at {x} UN.



1974] NON-n-MUTUALLY APOSYNDETIC CONTINUA 599

PrOOF. Let x€ M—N, and assume that M is n-mutually aposyn-
detic at {x} UN. Let p;, - -+, p,_; denote the elements of N. Then there
are disjoint continua X, H,, - -, H,_; such that x € K° and p, € H; for
each i=n—1. For each y € K°, M is n-mutually aposyndetic at {y} UN.
Hence for each such y, there is an (n—1)-point set J, different from N such
that M is not »-mutually aposyndetic at {y}UJ,. For each i=n—1 and
each j=1, let 4;; be the set of all points y € K° such that p, ¢ J, and the
distance between each pair of points in {p,} UJ, is at least 1/j. By Theorem
1, each A,; is closed relative to K°. Since K°={]J {4,;[iSn—1,jZ1}, by
the Baire category theorem, some A,.;. has interior. Then by Theorem 3,
there is a point s € 47, and corresponding J; that C-cuts p,. from s.
But since J,#N and N was the only (n—1)-point set which C-cuts, we
have a contradiction.

Using the following modified concept of composants due to Hagopian
[2, p. 620] we obtain an analog to Theorem 16 of [3, p. 411].

DEFINITION. The p-quasi-composant of the continuum M is the set
consisting of p together with the union of all subcontinua containing
p and missing some subcontinuum with interior.

THEOREM 5. If the continuum M has only one C-cut point p, then the
p-quasi-composant of M is all of M.

Proor. Let x and y be points of M—{p}. Since p is the only C-cut
point, x cannot C-cut y from p, so there are disjoint continua A and K
such that xe H° and {p, y}<K. Thus y € p-quasi-composant of M.
Since y was arbitrary in M—{p}, we have that M=p-quasi-composant.

EXAMPLE. A totally nonmutually aposyndetic compact metric continuum
which contains exactly one C-cut point.

The set of all nonzero integers will be denoted by Z'. For each ne Z’,
let a,=1/(2nm+=[6) and b,=1/2nm. Let

K={0,)| -1y =1} U{(x,sin1/x)| 0 < |x| = 1/m}
with the two points (—1/m, 0) and (1/, 0) identified. Set

K'=KU(U{b,»|0=y=tneZ
V(U{xD|a. =x=b,,neZ’}.

Let 4 and B be the following subsets of K’ x [0, 1]:
A=U{x %26, <x<b,0=z< (b, — x)/(b, — a,),neZ},

B = {(x,sinl/x,2)|a, < x <b,,
2 lZ - "}' < (X - an)/(bn - a'n), n EZ,}'
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Let K"=K’'x [0, 1]—(4UB). With the Cantor set denoted by C, we
define K”=K"xC with the set {(0, y, z)} X C identified for each pair
(y,2) € [0, 1] ie., the Cantor set of limiting (unit-square) disks are
identified to form one limiting disk. Finally, let M denote the continuum
K" with the four corners of the limiting disk identified to form a point p.
Then M is totally nonmutually aposyndetic and has only one C-cut
point, namely p.

THEOREM 6. If the set of all C-cut points in a compact planar continuum
M is totally disconnected, then M is locally connected.

PrOOF. Suppose that M is not locally connected. Then by [S, p. 130],
M is not 2-aposyndetic. Thus there are distinct points x, y, z € M such
that M is not aposyndetic at x with respect to {y, z}. Let L denote the
set of all points p such that M is not aposyndetic at p with respect to
{y, z}. Note that {x,y,z}<L. Since L has at most two components
[5, p. 128], there must be a nondegenerate continuum K contained in L.
For each p € K—{y, z}, p C-cuts y from z. It follows that the set of all
C-cut points is not totally disconnected. This concludes the proof.

THEOREM 7. Let n=2. The regular Hausdorff continuum M is strictly
non-n-mutually aposyndetic if and only if for each set {p,," -, p,_} of
n—1 points and each open set U, there exist points r, s € U such that
{p|i <n} C-cutsr from s.

PROOF. Assume that M is strictly non-n-mutually aposyndetic. Let
P1,* ", P be distinct points of M, and let U be an open set. For each
x € U, M is not n-mutually aposyndetic at {x}U{p,|i<n}. Let r€ U—
{pJi<n}. Then by Theorem 3, there is a point s € U such that {p,|i<n}
C-cuts r from s.

To prove the converse, we suppose to the contrary that x;,---, x,
are distinct points and M is n-mutually aposyndetic at {x,-|i§n}. Then
there are disjoint subcontinua C,, - - -, C, with x; € C; (for each i=<n).
Consequently, for each pair of points r, s in the open set C3, {x,.|i§n— 1}
does not C-cut r from s. Thus the proof is complete.

Thus we see that while a totally non-n-mutually continuum may
contain only one C-cut set (of n—1 points), in strictly non-n-mutually
aposyndetic continua every (n—1)-point set C-cuts.
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