NON- n-MUTUALLY APOSYNDETIC CONTINUA

LELAND E. ROGERS

Abstract

Relationships are shown between non- n-mutual aposyndesis and C-cutting in compact metric continua, including results analogous to those of F. B. Jones in the case of nonaposyndesis.

1. Introduction. In [2], F. Burton Jones discussed nonaposyndesis in compact metric continua, including certain relationships between nonaposyndesis and both cut points and indecomposability.
E. J. Vought [5] later proved the n-aposyndetic versions of many of Jones' results, as did C. L. Hagopian in the case of mutual aposyndesis [2]. This paper is concerned with the analogous results in the case of n-mutual aposyndesis [4], a generalization of both n-aposyndesis and mutual aposyndesis.
2. Definitions. A continuum is a nondegenerate closed connected set. The interior of a set A will be denoted by A^{0}. If $n \geqq 2$ and A is an n point subset of the continuum M, then M is n-mutually aposyndetic at A if there exist n disjoint subcontinua of M, each containing a point of A in its interior. If M is n-mutually aposyndetic at each n-point set, then M is said to be n-mutually aposyndetic. For $x \in M$ and $n \geqq 2$, if there exists an n-point set A containing x such that M is not n-mutually aposyndetic at A, then M is non-n-mutually aposyndetic at x. For $n \geqq 2$, if M is non- n-mutually aposyndetic at each of its points, then M is totally non-n-mutually aposyndetic. If M is n-mutually aposyndetic at no n-point set, then M is strictly non-n-mutually aposyndetic. For $n=2$ we obtain the notions of mutual aposyndesis, total nonmutual aposyndesis, and strict nonmutual aposyndesis [2]. A set D is said to cut x from y in M if D intersects every subcontinuum of M which contains $\{x, y\}$. A finite set $\left\{p_{1}, \cdots, p_{k}\right\}$ is said to C-cut x from y if for each collection $\left\{C_{1}, \cdots, C_{k}\right\}$ of disjoint subcontinua such that $p_{i} \in C_{i}^{o}$ (for $\left.i \leqq k\right), \bigcup_{1}^{k} C_{i}$ intersects each subcontinuum containing $\{x, y\}$. For $k=1$ we obtain Hagopian's notion of a single point C-cutting [2, p. 618].

[^0]3. Preliminary theorems. Theorems 1 and 2 correspond to Jones' Theorems 1 and 4 [3].

Theorem 1. Suppose that M is a regular Hausdorff continuum, $n \geqq 2$, and that (1) for each $i \geqq 1, x_{1 i}, \cdots, x_{n i}$ are distinct points such that M is not n-mutually aposyndetic at $\left\{x_{j i} \mid j \leqq n\right\}$, and (2) y_{1}, \cdots, y_{n} are distinct points of M such that for each $j \leqq n$, the sequence $x_{j 1}, x_{j 2}, \cdots$ converges to y_{j}. Then M is not n-mutually aposyndetic at $\left\{y_{j} \mid j \leqq n\right\}$.

Proof. Suppose that there are disjoint subcontinua H_{1}, \cdots, H_{n} such that for each $j \leqq n, y_{j} \in H_{j}^{o}$. For each $j \leqq n$, let k_{j} be an integer such that if $i \geqq k_{j}$ then $x_{j i} \in H_{j}^{o}$. Let $k^{\prime}=\max \left\{k_{j} \mid j \leqq n\right\}$. Then for each $j \leqq n$, $x_{j k^{\prime}} \in H_{j}^{0}$. Hence M is n-mutually aposyndetic at $\left\{x_{j k^{\prime}} \mid j \leqq n\right\}$, contrary to hypothesis. Thus the conclusion follows.

Theorem 2. Let $n \geqq 2$. The set of points at which the compact metric continuum M is non-n-mutually aposyndetic is an F_{σ} set.

Proof. For each positive integer j, let A_{j} be the set of all points $x \in M$ such that there are distinct points $p_{1}, \cdots, \dot{p}_{n-1}$ in $M-\{x\}$ satisfying the two properties that the distance between any pair in $\{x\} \cup\left\{p_{i} \mid i \leqq n-1\right\}$ is at least $1 / j$, and that M is not n-mutually aposyndetic at $\{x\} \cup\left\{p_{i} \mid i \leqq n-1\right\}$. It follows from Theorem 1 that each A_{j} is closed. Finally we observe that $\bigcup_{1}^{\infty} A_{j}$ is exactly the set of points at which M is non- n-mutually aposyndetic. This completes the proof

Definition. For $n \geqq 2$ and an ($n-1$)-point set A in the continuum M, $D(A)$ denotes the set of all points x such that either $x \in A$ or M is not n-mutually aposyndetic at $A \cup\{x\}$.

It follows immediately from the definition that M is n-mutually aposyndetic if and only if for each $(n-1)$-point set $A, D(A)=A$. By Theorem 1, the set $D(A)$ is always closed as is the case with the "aposyndetic" analog L_{x} [3, p. 405]; but while L_{x} is always connected, $D(A)$ need not be connected. The following example shows that it may even be totally disconnected.

EXAMPLE (FOR $n \geqq 2$). An ($n-1$)-mutually aposyndetic continuum which is not n-mutually aposyndetic on exactly one n-point set.

The continuum M will be constructed in E^{3}. For each $i \geqq 1$ let $T_{i}=$ $[0,1]^{2} \times\{1 / i\}$, and define $T_{0}=[0,1]^{2} \times\{0\}$. Let $b_{1}, \cdots, b_{2 n-2}$ be distinct points of $\{1\} \times[0,1] \times\{0\}$. For each $j \leqq 2 n-2$, let $C_{j}=\{1\} \times\left\{\pi_{2}\left(b_{j}\right)\right\} \times$ $[0,1]$ (π_{2} is the projection map onto the y-axis). Thus each C_{j} meets each T_{i} and $C_{j} \cap T_{0}=\left\{b_{j}\right\}$. Let $T=\left(\bigcup_{0}^{\infty} T_{i}\right) \cup\left(\bigcup_{1}^{2 n-2} C_{i}\right)$. Let y_{1}, \cdots, y_{n-1} be distinct points of the (two-dimensional) interior of T_{1}, and x a point of $T_{0}-\left\{b_{i} \mid i \leqq 2 n-2\right\}$. Let $A_{1}, \cdots, A_{2 n-2}$ be arcs lying in the (two-dimensional) interior of T_{1}, each pair intersecting in exactly the set $\left\{y_{i} \mid i \leqq n-1\right\}$
and no arc crossing another. For each $j \leqq 2 n-2$, let S_{j} be a homeomorph of $[0,1]^{2}$ such that $S_{j 0} \cap T=\{x\} \cup\left\{b_{i} \mid i \neq j\right\} \cup A_{j}$. For $j \leqq 2 n-2$ and $k \geqq 1$, let $S_{j k}$ be a homeomorph of $[0,1]^{2}$ such that $S_{j k} \cap T=\{x\} \cup\left\{b_{i} \mid i \neq j\right\}$ and such that for each j, the sequence $S_{j 1}, S_{j 2}, \cdots$ converges to $S_{j 0}$. Furthermore, we assume that the $S_{j k}$'s are chosen to be disjoint in the complement of T. Finally we let

$$
M=\bigcup\left\{S_{j k} \mid j \leqq 2 n-2, k \geqq 0\right\} \cup T
$$

Then M is $(n-1)$-mutually aposyndetic, and M is not n-mutually aposyndetic at $\{x\} \cup\left\{y_{i} \mid i \leqq n-1\right\}$, but M is n-mutually aposyndetic at any other n-point set.
4. Cut point theorems. A compact metric continuum which is totally nonaposyndetic (i.e., aposyndetic at none of its points) must contain a cut point [3, p. 409]. In the case of total non- n-aposyndesis, there must exist an n-point set which cuts [1, p. 102]. However the corresponding result in the case of mutual aposyndesis does not hold even in the plane, since the example of [4, p. 241] can be observed to be a totally nonmutually aposyndetic continuum in which no point cuts. In fact even strict nonmutual aposyndesis does not guarantee existence of a cut point [2, p. 622]. However, the more general type of cutting, C-cutting, is guaranteed in the event of total nonmutual aposyndesis [2, p. 619]. This result is extended to the general case of $n \geqq 2$ in a corollary to the following theorem.

Theorem 3. Suppose $n \geqq 2$. Let U be an open set in the compact metric continuum M, and L be a subset of M such that for each $x \in U$ there exists an $(n-1)$-point set $A \subset L-\{x\}$ such that M is not n-mutually aposyndetic at $\{x\} \cup A$. Then for each $r \in M-L$, there exists a point $s \in U$ such that, for each ($n-1$)-point set $B \cup L-\{s\}$ such that M is not n-mutually aposyndetic at $\{s\} \cup B$, the set B must C-cut r from s.

Proof. Let $r \in M-L$. Suppose that the theorem fails and that \mathscr{G} denotes the collection of unions of $n-1$ disjoint continua missing r, each containing a point of L in its interior.

Let $s \in U$. Then there is an $(n-1)$-point set $A \subset L-\{s\}$ such that M is not n-mutually aposyndetic at $\{s\} \cup A$ but A does not C-cut r from s. Thus there are disjoint subcontinua C_{1}, \cdots, C_{n-1} each containing a point of A in its interior, and a continuum T such that $\{r, s\} \subset T$ and $T \cap$ $\left(\bigcup_{1}^{n-1} C_{i}\right)=\varnothing$. Hence neither r nor s is in $\bigcup_{1}^{n-1} C_{i}$. Since M is not n mutually aposyndetic at $s \cup A$, it follows that M must not be aposyndetic at s with respect to $\bigcup_{1}^{n-1} C_{i}$. Note that $\bigcup_{1}^{n-1} C_{i}$ is an element of the collection \mathscr{G}.

Thus we have that for each $s \in U, M$ is not aposyndetic at s with respect to some member of \mathscr{G} which does not cut r from s. But by [1, p. 101], there is a point $s \in U$ such that the associated $\cup C_{i}$ does cut r from s. This contradiction concludes the proof of the theorem.

For $n=2$, Theorem 3 takes the form of Theorem 5 of [2, p. 618].
Corollary 1. Let $n \geqq 2$. If no $(n-1)$-point set C-cuts in the compact metric continuum M, then M is n-mutually aposyndetic at each point of a dense G_{δ} set.

Proof. Let D be the set of points at which M is n-mutually aposyndetic. By Theorem 2, $M-D$ is an F_{σ} set; so D is a G_{δ} set. Suppose that D is not dense in M. Let W be an open subset of $M-D$. For each positive integer k, let A_{k} denote the set of all points $x \in W$ such that there exists an ($n-1$)-point set $B \subset M-\{x\}$ with the distance between any pair of points in $\{x\} \cup B$ not less than $1 / k$, and with M not n-mutually aposyndetic at $\{x\} \cup B$. By Theorem 1, each A_{k} is closed relative to W. Note that $W=\bigcup_{k=1}^{\infty} A_{k}$. By the Baire category theorem, there is an integer k^{\prime} such that $A_{k^{\prime}}$ has interior. Let $y \in A_{k^{\prime}}^{o}$ and $\delta>0$ such that $\delta<1 / k^{\prime}$ and $N(y, \delta) \subset A_{k^{\prime}}^{o}$ [the open ball of radius d and center at x is denoted by $N(x, d)]$. Let $r \in N(y, \delta / 2)-N(y, \delta / 4)$, and $L=M-\{r\}$. Then for each $x \in N(y, \delta / 4)$, there is an ($n-1$)-point set $B \subset M-N\left(x, 1 / k^{\prime}\right)$ such that M is not n-mutually aposyndetic at $\{x\} \cup B$, and since the distance from x to r is at most $3 \delta / 4$ and $\delta \leqq 1 / k^{\prime}$, we see that B lies in $(M-\{r\})-\{x\}$ [which equals $L-\{x\}$]. Then by Theorem 3, there is a point $s \in N(y, \delta / 4)$ such that if B is an ($n-1$)-point set in $L-\{s\}$ and M is not n-mutually aposyndetic at $\{s\} \cup B$, then B must C-cut r from s. Since $s \in A_{k^{\prime}}$, there does exist an ($n-1$)-point set $B \subset M-N\left(s, 1 / k^{\prime}\right)$ [which is contained in $(M-\{r\})-\{s\}=L-\{s\}]$ such that M is not n-mutually aposyndetic at $\{s\} \cup B$, and consequently B must C-cut r from s. This contradiction concludes the proof.

Corollary 2. Suppose $n \geqq 2$. If the compact metric continuum M is totally non-n-mutually aposyndetic, then M contains an ($n-1$)-point set which C-cuts.

The next theorem is the n-mutual aposyndesis version of Theorem 17 of [3, p. 412].

Theorem 4. Let $n \geqq 2$. Suppose the compact metric continuum M is totally non-n-mutually aposyndetic and contains only one ($n-1$)-point set N which C-cuts. Then for each $x \in M-N, M$ is not n-mutually aposyndetic at $\{x\} \cup N$.

Proof. Let $x \in M-N$, and assume that M is n-mutually aposyndetic at $\{x\} \cup N$. Let p_{1}, \cdots, p_{n-1} denote the elements of N. Then there are disjoint continua $K, H_{1}, \cdots, H_{n-1}$ such that $x \in K^{o}$ and $p_{i} \in H_{i}^{o}$ for each $i \leqq n-1$. For each $y \in K^{0}, M$ is n-mutually aposyndetic at $\{y\} \cup N$. Hence for each such y, there is an $(n-1)$-point set J_{v} different from N such that M is not n-mutually aposyndetic at $\{y\} \cup J_{y}$. For each $i \leqq n-1$ and each $j \geqq 1$, let $A_{i j}$ be the set of all points $y \in K^{\circ}$ such that $p_{i} \notin J_{y}$ and the distance between each pair of points in $\left\{p_{i}\right\} \cup J_{y}$ is at least $1 / j$. By Theorem 1 , each $A_{i j}$ is closed relative to K^{0}. Since $K^{0}=\bigcup\left\{A_{i j} \mid i \leqq n-1, j \geqq 1\right\}$, by the Baire category theorem, some $A_{i^{\prime} j^{\prime}}$ has interior. Then by Theorem 3, there is a point $s \in A_{i^{\prime} j}^{0}$ and corresponding J_{s} that C-cuts $p_{i^{\prime}}$ from s. But since $J_{s} \neq N$ and N was the only ($n-1$)-point set which C-cuts, we have a contradiction.

Using the following modified concept of composants due to Hagopian [2, p. 620] we obtain an analog to Theorem 16 of [3, p. 411].

Definition. The p-quasi-composant of the continuum M is the set consisting of p together with the union of all subcontinua containing p and missing some subcontinuum with interior.

Theorem 5. If the continuum M has only one C-cut point p, then the p-quasi-composant of M is all of M.

Proof. Let x and y be points of $M-\{p\}$. Since p is the only C-cut point, x cannot C-cut y from p, so there are disjoint continua H and K such that $x \in H^{o}$ and $\{p, y\} \subset K$. Thus $y \in p$-quasi-composant of M. Since y was arbitrary in $M-\{p\}$, we have that $M=p$-quasi-composant.

Example. A totally nonmutually aposyndetic compact metric continuum which contains exactly one C-cut point.

The set of all nonzero integers will be denoted by Z^{\prime}. For each $n \in Z^{\prime}$, let $a_{n}=1 /(2 n \pi+\pi / 6)$ and $b_{n}=1 / 2 n \pi$. Let

$$
K=\{(0, y) \mid-1 \leqq y \leqq 1\} \cup\{(x, \sin 1 / x)|0<|x| \leqq 1 / \pi\}
$$

with the two points $(-1 / \pi, 0)$ and $(1 / \pi, 0)$ identified. Set

$$
\begin{aligned}
K^{\prime}= & K \cup\left(\bigcup\left\{\left(b_{n}, y\right) \left\lvert\, 0 \leqq y \leqq \frac{1}{2}\right., n \in Z^{\prime}\right\}\right) \\
& \cup\left(\bigcup\left\{\left.\left(x, \frac{1}{2}\right) \right\rvert\, a_{n} \leqq x \leqq b_{n}, n \in Z^{\prime}\right\}\right) .
\end{aligned}
$$

Let A and B be the following subsets of $K^{\prime} \times[0,1]$:

$$
\begin{aligned}
& A=\bigcup\left\{\left.\left(x, \frac{1}{2}, z\right) \right\rvert\, a_{n}<x<b_{n}, 0 \leqq z<\left(b_{n}-x\right) /\left(b_{n}-a_{n}\right), n \in Z^{\prime}\right\}, \\
& B=\bigcup\left\{(x, \sin 1 / x, z) \mid a_{n}<x<b_{n}\right. \\
& \left.\quad 2\left|z-\frac{1}{2}\right|<\left(x-a_{n}\right) /\left(b_{n}-a_{n}\right), n \in Z^{\prime}\right\} .
\end{aligned}
$$

Let $K^{\prime \prime}=K^{\prime} \times[0,1]-(A \cup B)$. With the Cantor set denoted by C, we define $K^{\prime \prime \prime}=K^{\prime \prime} \times C$ with the set $\{(0, y, z)\} \times C$ identified for each pair $(y, z) \in[0,1]^{2}$, i.e., the Cantor set of limiting (unit-square) disks are identified to form one limiting disk. Finally, let M denote the continuum $K^{\prime \prime \prime}$ with the four corners of the limiting disk identified to form a point p. Then M is totally nonmutually aposyndetic and has only one C-cut point, namely p.

Theorem 6. If the set of all C-cut points in a compact planar continuum M is totally disconnected, then M is locally connected.

Proof. Suppose that M is not locally connected. Then by [5, p. 130], M is not 2-aposyndetic. Thus there are distinct points $x, y, z \in M$ such that M is not aposyndetic at x with respect to $\{y, z\}$. Let L denote the set of all points p such that M is not aposyndetic at p with respect to $\{y, z\}$. Note that $\{x, y, z\} \subset L$. Since L has at most two components [$5, \mathrm{p} .128$], there must be a nondegenerate continuum K contained in L. For each $p \in K-\{y, z\}, p C$-cuts y from z. It follows that the set of all C-cut points is not totally disconnected. This concludes the proof.

Theorem 7. Let $n \geqq 2$. The regular Hausdorff continuum M is strictly non-n-mutually aposyndetic if and only if for each set $\left\{p_{1}, \cdots, p_{n-1}\right\}$ of $n-1$ points and each open set U, there exist points $r, s \in U$ such that $\left\{p_{i} \mid i<n\right\} C$-cuts r from s.

Proof. Assume that M is strictly non-n-mutually aposyndetic. Let p_{1}, \cdots, p_{n-1} be distinct points of M, and let U be an open set. For each $x \in U, M$ is not n-mutually aposyndetic at $\{x\} \cup\left\{p_{i} \mid i<n\right\}$. Let $r \in U-$ $\left\{p_{i} \mid i<n\right\}$. Then by Theorem 3, there is a point $s \in U$ such that $\left\{p_{i} \mid i<n\right\}$ C-cuts r from s.

To prove the converse, we suppose to the contrary that x_{1}, \cdots, x_{n} are distinct points and M is n-mutually aposyndetic at $\left\{x_{i} \mid i \leqq n\right\}$. Then there are disjoint subcontinua C_{1}, \cdots, C_{n} with $x_{i} \in C_{i}^{o}$ (for each $i \leqq n$). Consequently, for each pair of points r, s in the open set $C_{n}^{o},\left\{x_{i} \mid i \leqq n-1\right\}$ does not C-cut r from s. Thus the proof is complete.

Thus we see that while a totally non- n-mutually continuum may contain only one C-cut set (of $n-1$ points), in strictly non- n-mutually aposyndetic continua every ($n-1$)-point set C-cuts.

References

1. E. E. Grace, Cut sets in totally nonaposyndetic continua, Proc. Amer. Math. Soc. 9 (1958), 98-104. MR 20 \#1960.
2. C. L. Hagopian, Mutual aposyndesis, Proc. Amer. Math. Soc. 23 (1969), 615-622. MR 40 \#876.
3. F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606.
4. L. E. Rogers, Concerning n-mutual aposyndesis in products of continua, Trans. Amer. Math. Soc. 162 (1971), 239-251. MR 45 \#2676.
5. E. J. Vought, n-aposyndetic continua and cutting theorems, Trans. Amer. Math. Soc. 140 (1969), 127-135. MR 39 \#3462.

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82070

[^0]: Received by the editors March 13, 1973.
 AMS (MOS) subject classifications (1970). Primary 54F20; Secondary 54F25.
 Key words and phrases. n-mutual aposyndesis, mutual aposyndesis, aposyndesis, continuum, C-cut point.

