ON CLOSED SETS OF ORDINALS

HARVEY FRIEDMAN1

ABSTRACT. We prove that every stationary set of countable ordinals contains arbitrarily long countable closed subsets.

Call a set A of ordinals *closed* if and only if every nonempty subset of A which has an upper bound in A has its least upper bound in A. It is well known that there are $B \subseteq \omega_1$ such that neither B nor $\omega_1 - B$ contains an uncountable closed subset. A consequence of what we prove here is that for every $B \subseteq \omega_1$, either B or $\omega_1 - B$ contains arbitrarily long countable closed subsets.

Call a set A of ordinals κ -stationary if and only if $A \subseteq \kappa$ and A intersects every closed subset of κ of power κ . We can restate the above well-known theorem as follows: There is an A such that A and $\omega_1 - A$ are both ω_1 -stationary.²

We will prove here that every ω_1 -stationary set contains arbitrarily long, countable, closed subsets.

Is there a cardinal κ such that for all $A \subseteq \kappa$, either A or $\kappa - A$ contains an uncountable closed subset? Is this true for $\kappa = \omega_2$? Karel Prikry and the author noticed that, in any case, the statement for $\kappa = \omega_2$ cannot be proved true in ZFC.³

Theorem. Every ω_1 -stationary set contains arbitrarily long countable closed subsets.

PROOF. Let A be ω_1 -stationary. We prove by induction on $\alpha < \omega_1$ that A has a closed subset of length α . Let the induction hypothesis be that

Received by the editors November 30, 1972.

AMS (MOS) subject classifications (1970). Primary 04A20; Secondary 02K02, 02K35. Key words and phrases. Ordinals, cardinals.

¹ The writing of this paper was partially supported by NSF grant GP-34091X. The Theorem was obtained in 1968.

² In fact, Solovay [1] proves that for uncountable regular cardinals κ , every κ -stationary set is the union of κ disjoint κ -stationary sets.

³ By adding an $f:\omega_2\to\{0,1\}$ generic with respect to the partial ordering of countable partial $g:\omega_2\to\{0,1\}$. If the ground model satisfies $ZFC+2^\omega=\omega_1$, then in the forcing extension cardinals are preserved, $\{\alpha:f(\alpha)=1\}$ and $\{\alpha:f(\alpha)=0\}$ contain no uncountable closed subsets, and $2^\omega=\omega_1$ holds.

[@] American Mathematical Society 1974

for all $\beta < \alpha$ and for each $\gamma < \omega_1$, there is a closed subset $B \subseteq A$ of length β , all of whose elements are $> \gamma$.

- Case 1. α is a limit ordinal $<\omega_1$. Choose $\beta_0<\beta_1<\dots<\alpha$, with $\sup_n(\beta_n)=\alpha$. Let $\gamma<\omega_1$. By the induction hypothesis, let $B_0\subseteq A$, B_0 of length β_0+1 , B_0 closed, $(\forall\beta\in B_0)$ $(\beta>\gamma)$. Let $B_{n+1}\subseteq A$, B_{n+1} of length $\beta_{n+1}+1$, B_{n+1} closed, $(\forall\beta\in B_{n+1})$ $(\beta>\sup(B_n))$. Then set $B=\bigcup_n B_n$. B has the desired properties.
- Case 2. $\alpha = \delta + 2$, $\alpha < \omega_1$. Let $\gamma < \omega_1$. By the induction hypothesis, let $B_0 \subset A$ be closed, of length $\delta + 1$, and $(\forall \beta \in B_0)$ $(\beta > \gamma)$. Let $\lambda \in A$ with $\lambda > \sup(B_0)$. Put $B = B_0 \cup \{\lambda\}$. B has the desired properties.
- Case 3. $\alpha = \lambda + 1$, λ a limit ordinal $<\omega_1$. Let $\lambda_0 < \lambda_1 < \cdots < \lambda$, $\sup_n(\lambda_n) = \lambda$. Let $\gamma < \omega_1$. By the induction hypothesis, define a sequence of sets B_{ξ} , $\xi < \omega_1$, such that
 - (a) $(\forall \beta \in B_0) \ (\beta > \gamma)$
 - (b) if $\xi_1 < \xi_2$ then $(\forall \beta_1 \in B_{\xi_1})(\forall \beta_2 \in B_{\xi_2})(\beta_1 < \beta_2)$
 - (c) each B_{ε} is a closed subset of A of length λ .

Define $f: \omega_1 \to \omega_1$ by $f(\xi) = \sup(\bigcup_{\sigma < \xi} B_{\sigma})$. Note that the range of f on limit ordinals is an uncountable closed set. Since A is stationary, let τ be a countable limit ordinal with $f(\tau) \in A$. Choose $\tau_0 < \tau_1 < \cdots < \tau$ with $\sup_n(\tau_n) = \tau$. Let C_n be the first $\lambda_n + 1$ elements of B_{τ_n} . Then set $B^* = \bigcup_n C_n$. B^* is a closed subset of A of length λ , and $\sup(B^*) = f(\tau) \in A$. Hence $B = B^* \cup \{f(\tau)\}$ is a closed subset of length at least α , all of whose elements are $> \gamma$, and we are done.

The referee has kindly forwarded the following remarks concerning the problems raised on the first page of this paper.

Let us say that a cardinal $K>\omega$ has the property F (briefly, F(K)) if for every subset A of K either A or K-A contains a closed subset of order type ω_1 .

- (1) Silver has shown that the Jensen principle \square_{ω_1} implies $\neg F(\omega_2)$. Since $\neg \square_{\omega_1} \rightarrow ``\omega_2$ is Mahlo in L" this gives a lower bound on the prooftheoretic strength of $ZFC + F(\omega_2)$.
- (2) Silver has also observed that in any Cohen extension of any model M of ZFC obtained by generically collapsing ω_1^M to ω , F(K) fails for all uncountable M-cardinals K. (For A take $\{\alpha: cf^M(\alpha) = \omega \text{ and } \alpha < K\}$.)
- (3) Solovay has generalized Silver's proof in (1) above to show that, in L, F(K) fails for all cardinals $K > \omega$.

Karel Prikry has informed the author that he has independently shown that F(K) fails for all cardinals $K > \omega$, in L.

REFERENCE

1. R. M. Solovay, *Real-valued measurable cardinals*, Axiomatic Set Theory (Proc. Sympos. Pure Math., vol. 13, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 45 #55.

Department of Mathematics, Stanford University, Stanford, California 94305

Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226