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ON  CLOSED  SETS  OF  ORDINALS

HARVEY  FRIEDMAN1

Abstract.   We prove that every stationary set of countable

ordinals contains arbitrarily long countable closed subsets.

Call a set A of ordinals closed if and only if every nonempty subset of

A which has an upper bound in A has its least upper bound in A. It is

well known that there are B^cox such that neither B nor cx>x—B contains

an uncountable closed subset. A consequence of what we prove here is

that for every B<^oxi, either B or cox—B contains arbitrarily long countable

closed subsets.

Call a set A of ordinals x-stationary if and only if A<=k and A inter-

sects every closed subset of k of power k. We can restate the above well-

known theorem as follows: There is an A such that A and cox—A are both

«^-stationary.2

We will prove here that every cuj-stationary set contains arbitrarily

long, countable, closed subsets.

Is there a cardinal k such that for all A<=k, either A or k—A contains

an uncountable closed subset? Is this true for k = co21 Karel Prikry and

the author noticed that, in any case, the statement for k=co2 cannot

be proved true in ZFC.3

Theorem. Every mx-stationary set contains arbitrarily long countable

closed subsets.

Proof. Let A be ct^-stationary. We prove by induction on a<co1 that

A has a closed subset of length a. Let the induction hypothesis be that
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The Theorem was obtained in 1968.
2 In fact, Solovay [1] proves that for uncountable regular cardinals k, every k-

stationary set is the union of k disjoint «-stationary sets.

3 By adding an/:co2->-{0, 1} generic with respect to the partial ordering of countable

partial ^:co2->-{0, 1}. If the ground model satisfies ZFC+20,=cu1, then in the forcing

extension cardinals are preserved, {a:/(a) = l} and {a:/(a)=0} contain no uncountable

closed subsets, and 203=cal holds.
© American Mathematical Society 1974

190



ON  CLOSED SETS  OF ORDINALS 191

for all ß<a. and for each y<cox, there is a closed subset B<=A of length ß,

all of whose elements are >y.

Case 1. a is a limit ordinal <cox. Choose ß0<ßx<- • <a, with

sup„(/9n) = a. Let y<cox. By the induction hypothesis, let B0^A, B0 of

length 00+1, B0 closed, (VßeB0) (ß>y). Let Bn+X<=A, Bn+X of length

/Vi + 1, 5«+i closed> WeiJ (/5>sup(5n)). Then set 5=U„^-
5 has the desired properties.

Caie 2. <x=<5+2, a<co1. Let y<co1. By the induction hypothesis,

let £0c A be closed, of length ó +1, and (V/S g 50) (/?>y). Let X e A with

A>sup(50). Put B=B0^J{X}. B has the desired properties.

Case 3. a=X + l, X a limit ordinal <cox. Let 20<A1<-•-<A,

sup„(An)=A. Let y<tox. By the induction hypothesis, define a sequence

of sets Bç, f <a>i, such that

i*)(VßeB0)iß>y)

(b) if &< f, then (Vft g Jfi)(V/î, g B^)ißx<ß2)
(c) each 5f is a closed subset of ^4 of length X.

Define /: cox-+cox by f(Ç) = sup(\Ja<ç Ba). Note that the range of fon

limit ordinals is an uncountable closed set. Since A is stationary, let r be

a countable limit ordinal with f(r) e A. Choose t0<tx<- ■ -<t with

sup,,Ít„) = t. Let C„ be the first Xn + l elements ofBTn. Then set B*= \Jn Cn.

B* is a closed subset of A of length X, and sup(Ä*)=/(r) g^4. Hence

B=B* U{/(t)} is a closed subset of length at least a, all of whose elements

are >y, and we are done.

The referee has kindly forwarded the following remarks concerning

the problems raised on the first page of this paper.

Let us say that a cardinal K>co has the property F (briefly, F(Ä)) if

for every subset A of K either A or K— A contains a closed subset of order

type cox.

(1) Silver has shown that the Jensen principle nrai implies -iF(co2).

Since -i □ol->'"cu2 is Mahlo in L" this gives a lower bound on the proof-

theoretic strength of ZFC+F(co2).

(2) Silver has also observed that in any Cohen extension of any model

M of ZFC obtained by generically collapsing co^ to co, FiK) fails for all

uncountable M-cardinals K. (For A take {a:c/M(a) = cu and a<AT}.)

(3) Solovay has generalized Silver's proof in (1) above to show that,

in L, F(K) fails for all cardinals K>m.

Karel Prikry has informed the author that he has independently shown

that F(K) fails for all cardinals K>co, in L.
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