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FUNCTIONAL-DIFFERENTIAL EQUATIONS
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Abstract.    Some new criteria are given for the oscillation of

solutions of perturbed functional-differential equations of the form

(I) *"*' + P(t)f(x(g(t))) = Q(t).

The results are new even in the case^(i)—', or when (I) is linear.

The function Q(t) does not have to be small or periodic.

1. Introduction. The first of the authors raised in [4] the following

question: What kind of perturbations Q(t) force all solutions of the

equation

(») x<"> + P(t, x, x , ■ ■ ■ , x«"-1') = ô(i),       n = 2,

to oscillate, although the homogeneous equation is not necessarily

oscillatory? It is our intention here to answer this question for a large

class of equations. Actually, we present our result in the case of a func-

tional-differential equation of the type

(I) x<«> + P(t)f(x(g(t))) = Q(t).

The theorems of this paper are entirely new even in the case g(t) = t,

or when/is linear.

Possible generalizations and some examples are discussed at the end

of the paper. For results related to the contents of this paper the reader

is referred to Kartsatos [2], [3], [4], Teufel [6], Atkinson [1] for the case

of an ordinary equation, and True [7], Kusano and Onose [5] for the

case (I).

In what follows, use will be made of the following conditions:

(i) P£C[[0, oo), Ä], Ä=(-oo, oo);

(ii) g e C[[0, co), R], lim^œ g(t)= + oo ;

(iii) fe C[R, R], increasing and uf(u)>0 forueR with w^O;

(iv) Q £ C[[0, oo), R).
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By a solution of (I) we mean a function x e Cn[[tx, oo), R], which

satisfies (I) for all t e [tx, oo). Here tx^.O depends on the particular

solution x(t). Let fF denote the family of all such solutions of (I). A

function x e IF is said to be "oscillatory" if it has an unbounded set of

zeros in [tx, oo). Equation (I) is called oscillatory if every x e ¡F is

oscillatory.

2. Main results. The following theorem ensures the oscillation of all

solutions of equation (I).

Theorem 1. Along with the hypotheses (i)-(iv), assume that P(t)^.0,

t e [0, oo) and that there exists a function R e Cn[0, oo), oscillatory and,

such that Rm(t) = Q(t), t e [0, oo). Moreover, assume that for every A>0,

lim sup f P(s)f(X + R(g(s))) ds = +00,
i-»oc     Jo

lim inf i P(s)f(-X + R(g(s))) ds = - oo.
l->oo    Jo

Then for n even, equation (I) is oscillatory. For n odd every xeiF is

oscillatory, or such that lim[x(t)—R(t)]=0 monotonically as i-*-oo. If the

above integral conditions hold for 2=0, then (I) is oscillatory also for n odd.

Proof. Assume that the above integral conditions hold for every

A>0 and that n is even. Assume that (I) is not oscillatory. Let x e F

be such that x(t)>0, t^t^t^ Let u(t)=x(t)—R(t), te [t0, oo). Then

u(t) satisfies the equation

(1) «<") + P(t)f(u(g(t)) + R(g(t))) = 0.

Since u(t)+R(t)>0 for t e [t0, oo), it follows that there exists r1=:/0

such that u(g(t))+R(g(t))>0 for t^tx. Thus,

(2) u^(t) = -P(t)f(u(g(t)) + R(g(t))) = 0,       t£ tx.

Consequently, all the derivatives of u(t) up to the order n are eventually

of one sign and none of them is identically zero on an infinite interval,

because this would imply the same for the derivative of order n, a con-

tradiction to the first of the integral assumptions. Furthermore, u(t) is

strictly increasing, or strictly decreasing for all large t. Assume for the

moment that u(t)<0 for all large t. Then there exists t2^tx such that

m(c?W)<0 for t^t2. Thus, 0>u(g(t))>-R(g(t)), a contradiction to the

oscillatory character of R(t). It follows that u(t)>0 for all large t, and

this implies (cf, also Kartsatos [3, Theorem 2]) that u'(t)>0 and

M(«-i)(i)>0 for all large t, Thus, there exists t2>tx such that

(3) t/<"-1)(0>0   and   u(g(t))^X>0   for / > t2,
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where X is a constant. Integrating (1) we obtain, for t^t2,

u<n~v(t) = «<"""(!,) - f tp(s)f(u(g(s)) + R(g(s)))ds

(4) -,
<: u{n~v(t2) -    P(s)f(X + R(g(s))) ds.

Jtt

This easily implies lim inf^^ M<n~1'(í)= — oo, a contradiction to the

first of (3). Consequently, u(t) cannot be positive, or negative, or oscilla-

tory for all large t, i.e., u(t) does not exist under the assumption x(t)>0,

t^t0. A similar situation appears in the case x(t)<0, r^/0, and this com-

pletes the proof of the theorem in the case of even n. Exactly the same

argument applies in the case of odd n, except the fact that u'(t) could be

eventually negative when u(t)>0 for all large t, or eventually positive

when w(i)<0 for all large t. Both cases imply lim u(t)=lim[x(t) — R(t)]=0

monotonically as /—»-co. For such considerations the reader is referred to

the proof of Theorem 1 in Kartsatos [4]. Now if the integral conditions

hold for X = 0, then they hold for all X>0, and the theorem is true for the

case of even n. However, if n is odd we obtain from the equation in (4)

(5) u^Xt) = uin-l)(t2) - ¡P(s)f(R(g(s))) ds,
J ¿2

for all /_(some) t2. This implies lim,^^ u<"-1'(r)= — oo, orlim^œ «(f) =

— oo, a contradiction to the positivity of u(t). An analogous situation

holds in the case of an eventually negative u(t). Consequently, x(t) is

oscillatory, and the proof is complete.

We now give two useful corollaries to the above theorem.

Corollary 1. Assume thatf(u) = u2Q+1, where q is a nonnegative integer.

Assume further that the hypotheses (i)-(iv) are satisfied, P(t)^.0 for f=0,

and Q, R are as in Theorem 1. Moreover, let

(6)
/*00 /*00

I   P(t) dt=+cc, P{t) \R(g(t))\m dt < oo,
Jo Jo

for every m=l,2, • • ■ ,2q+l.   Then the conclusion of Theorem 1 con-

cerning the case Xj^O is satisfied.

Proof.    It suffices to observe that, for a real X^O,

k=0

(7) (X + R(g(0))2a+1 =T(2^ ,+ l)*2Q+1-kWg(t))T-
i-=o \     k    I
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Corollary 2.    Let the assumptions of Corollary 1 be satisfied except (6).

Let
/»OO

lim sup     P(t)[R(g(t))]m dt = +00,
i-»ao      JO

°P(t)[R(g(t))]m dt = -oo

for some even integer m with 2^m^2q, and

V(f)|R(g(0)|3'<ii<+oo

lim inf
i->oo    JO

f
for eachj=0, 1, 2, ■ ■ • , m—\, m + \, ■ ■ • , 2q+l.

Then the conclusion of Theorem 1 concerning the case X^O is satisfied.

Proof. Another application of formula {7), since every even power of

R(g(t)) is multiplied by an odd power of X.

The effect of "weighted" integral conditions on the bounded solutions

of (I) is given by the following

Theorem 2. Let the assumptions of Theorem 1 hold with R bounded

and the integral conditions replaced by

(8) lim sup f smiP(s)f(X + R(g(s))) ds = + oo,
i->oo     Jo

(9) lim inf f sm*P(s)f(-X + R(g(s))) ds = - oo,
t-»oo     JO

where mx, m2 are integers with 1 ̂ mx, m2^n — l.

Then (a) if (8), (9) hold for every X>0, every bounded xe!F is oscil-

latory for n even, and every bounded xeF is oscillatory, or such that

\im[x(t)—R(t)]=0 monotonically as t-*oo for n odd; (b) // (8), (9) hold

for X=0, every bounded xe¡F is oscillatory.

Proof. Assume that n is even and that x(t), u(t) are as in the proof

of Theorem 1 up to the inequalities (3). Then consider the function

fmiM(n~1)(f). Differentiation of this function gives

[t*a(-ü(t)]' = -ímiF(í)/(«(g(0) + R(g(t))) + m^-V"-1^),

and integration from f2 to t^t2 gives

ri„(n-l»(í) =  íru<«-l>(Í2) _  rs^P(s)f(u(g(s)) + R(g(S))) ds
Jtl

(10) r
+ mx   smi-lu{n-l\s) ds.

Jti
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This implies (by condition (8))

(11) lim inf
r->oo

.mi,An—1){ x [ smi-1u(n-1)(

Jh

rV-^i) - i»!    smi-lu{n-v(s) ds = —oo.

However, since M<"_1>(f)>0 for t^t2, and the integral in (11) is an

increasing function of f, we have

(12) lim Çsmi-1u(n-1,(s)ds = +oo.
f-* 00  J 11

The proof now continues as in Theorem 1 of Kartsatos [3]. If x(t) is

bounded then «(f) is also bounded and ( — l)V(f)<0 for k=\, 2, • • • ,

« —1 and f £ [f2, oo), and successive integration by parts of the integrand

in (12) yields eventually

lim^ j u[n~m)

t-* 00  J 12

(s) ds = + co,    if m is odd,

= — oo,    if m is even,

which is a contradiction to the boundedness of «(f):

lim [«<»-M-1,(0 - «("-m-1)(f2)] = ±co.
t~* 00

In order to avoid repetition, we omit the rest of the proof concerned

with the case of eventually negative «(f), or n odd, or A=0.

It is natural to expect now that similar results hold in the case of a

nonpositive P(t). As the following example indicates, this is not always

the case.

Example 1.    Consider the second order equation

(13) x" - (ë - Q(t))e~'x = Q(t),

with R(t)=et/2sint and Q(t)=R"(t). Then it is easy to check that the

integral conditions of Theorem 1 hold for X=0. However, (13) has the

nonoscillatory solution x(t) = el.

Nevertheless, there are some cases of importance where Theorems 1

and 2 have analogues. The following theorem ensures the oscillation of

all bounded solutions of the equation

(II) x<«> - P(t)f(g(t)) = ß(f)

with />(f)=0.

Theorem 3. Theorem 2 holds for the equation (il), ifmx, m2 in (8), (9)

are allowed to be zero, and if "odd" is replaced everywhere by "even" and

conversely.
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Proof. Assume that x(t), t e [tx, oo), is a bounded nonoscillatory

solution of (II). Then, without loss of generality, we assume that x(t)>0,

/ £ [tx, oo), tx^tx. Then u(t)=x(t)—R(t) is a bounded solution of the

equation

(14) «<"> - P(t)f(u(g(t)) + R(g(t))) = 0,

for which u(g(t))+R(g(t))>0 for every t^t2^tx. Consequently, «'"'(O^O

for every f^f2, which implies that all the derivatives u{i)(t), <=0, 1, • • • , n,

are of fixed sign for all large f, and no two consecutive derivatives are of

the same sign for all large t, for this would force «(f) to diverge to ± oo as

/—»-oo. Thus, «("_1,(f)5í0 for /_:/3_:/2. Now assume that the integral

condition (8) holds for every A>0. Then, as in the proof of Theorem 2,

we obtain

/"»«'"-»(f) = Í3mi«(n-1,(í3) + í'smiP(s)f(u(g(s)) + R(g(s)))ds

(15) ft Ju
+ mx    s™-lu(n-x)(s) ds,       t ^ t3.

JH

Now assume that « = odd. Then since w'(f)^0 for t^.t3, u(g(t))^.X>0

for f £ [/3, oo) (f3 can be chosen a priori this way). Thus, from (15) we

obtain

tmiu(n~1](t) — mx    smi_1«(""1,(s) ds
Jt3

^ tTuln-v(t3) + Csm>P(s)f(X + R(g(s))) ds
JI3

for /=/3, which implies lim(_œ JJ3 j"11-1«1"-1'^) ds= — oo, a contradiction

as in Theorem 2. We omit the rest of the proof.

3. Discussion-Examples. It is possible to extend the present results to

equations of the form

(HI) x<"> + />„(/, *(/), x(g(t))) = Q(t),

where x(t) = (x(t), x'(t), • ■ ■ , x<n_1i(i)), under suitable assumptions on the

function P0. For example, P0 could be considered as bounded above and

below by functions of the form P(i)f(x(g(t))). A lot of open problems

arise now with respect to the choice of the perturbation Q(t). For example,

there exist oscillating perturbations, which cannot be represented as «th

derivatives of oscillating functions. For example, the function Q(t) =

\-\-2sint. Any function R(t) with R^(t) = Q(t), would have to satisfy

RSn-^(t)=\t—2 cos t+C (C constant) for all large f, i.e., lim,^«, R(t)= oo.

However, the equation

(16) x" - x = \ + 2 sin /
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has all its bounded solutions oscillatory. In fact, the general solution of

(16) is x(t)=cxet + c2e~i—sin f—\. Consequently, there are large classes

of equations to be studied under the above considerations. In short, it

should be possible to study the oscillatory character of (II) without using

the transformation u(t)=x(t)—R(t). Another open problem is the follow-

ing: Assuming that the homogeneous equation is oscillatory, what kind

of perturbations Q(t) stop the oscillation of all, or part of the solutions

of (II)?

In view of Corollaries 1 and 2 it is easy to give examples of equations

satisfying all the assumptions of Theorem 1. An equation satisfying all

the assumptions of Theorem 2 is the following

(17) x" + [|(1 + t2)]x = [/"* sin if,        t = 1,

where a is a constant with 0<a<l. It follows that every solution of (17)

is either unbounded or bounded and oscillatory.

The authors wish to express their thanks to the referee for his helpful

suggestions concerning the style of the paper.
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