EXTENSIONS OF THE INDEX IN FACTORS OF TYPE Π_{∞}

MICHAEL GARTENBERG

ABSTRACT. In this paper we show that the analytic index has no continuous extension to those operators in a factor of type Π_{∞} on a separable Hilbert space which are not semi-Fredholm in the Breuer sense. A similar result has already been proved by Coburn and Lebow [3] for factors of type I_{∞} . Here we use Breuer's generalized Fredholm theory to extend their result to the more general setting.

1. **Definitions and preliminaries.** As usual, $\mathscr{B}(\mathscr{H})$ denotes the algebra of all bounded operators on the separable Hilbert space \mathscr{H} . A *-subalgebra of $\mathscr{B}(\mathscr{H})$ that is closed in the weak operator topology is called a von Neumann algebra. If the center of \mathscr{A} consists precisely of scalar multiples of the identity, then \mathscr{A} is called a factor. For E, F in $\mathscr{P}(\mathscr{A})$, the set of all projection operations in \mathscr{A} , we write $E \leq F \Leftrightarrow EF = E$. The equivalence relation \sim on $\mathscr{P}(\mathscr{A})$ is defined by $E \sim F$ if and only if there is a partially isometric operator U in \mathscr{A} such that E = U * U and F = UU *. Finally, an order relation \lesssim on $\mathscr{P}(\mathscr{A})$ is given by $E \lesssim F$ if and only if there is an F' in $\mathscr{P}(\mathscr{A})$ such that $E \sim F' \leq F$.

A projection operator E is said to be finite if it is not equivalent to any $F \in \mathcal{P}(\mathcal{A})$ where $F \leq E$ and $F \neq E$. Otherwise, E is said to be infinite. If the identity of a von Neumann algebra \mathcal{A} is a finite (infinite) projection, then \mathcal{A} is called finite (infinite).

We follow Breuer's generalization of the concepts of compact and Fredholm operators to a von Neumann algebra \mathscr{A} . For $B \in \mathscr{A}$

$$N_B = \sup\{E \in \mathscr{P}(\mathscr{A}) : BE = 0\}$$

and

$$R_B = \inf\{E \in \mathscr{P}(\mathscr{A}) : EB = B\}$$

are called the null projection and range projection of B, respectively. We call B finite if R_B is a finite projection. If \mathcal{K} is the norm closure of the

Received by the editors January 29, 1973 and, in revised form, May 9, 1973.

AMS (MÓS) subject classifications (1970). Primary 46L10; Secondary 47B05, 47B30.

Key words and phrases. Index of a semi-Fredholm operator, von Neumann algebra, factor of type Π_{∞} .

set of finite elements of \mathscr{A} , then \mathscr{K} is a closed two-sided ideal in \mathscr{A} . The elements of \mathscr{K} are said to be compact relative to \mathscr{A} .

DEFINITION. Let $\mathscr A$ be a factor. An operator $B \in \mathscr A$ is said to be Fredholm relative to $\mathscr A$ if

- (i) N_B is a finite projection, and
- (ii) there is a finite projection E in $\mathscr A$ such that the range of I-E is contained in the range of B.

Let $\mathscr{F}(\mathscr{A})$ be the set of Fredholm elements relative to a factor \mathscr{A} , and let Dim denote some fixed relative dimension function on \mathscr{A} [6]. It follows from the definitions that if B is Fredholm relative to \mathscr{A} then Dim N_B and Dim N_{B^*} are both finite. We can thus define the index, i, of a Fredholm element B relative to \mathscr{A} by

$$i(B) = \text{Dim } N_B - \text{Dim } N_{B^*}.$$

The classical Fredholm theory is generalized by Breuer to compact and Fredholm operators relative to a factor. Specifically, if $\mathscr A$ is an infinite factor, then $B \in \mathscr A$ is Fredholm relative to $\mathscr A$ if and only if $\pi(B)$ is invertible in $\mathscr A/\mathscr K$; for $A, B \in \mathscr F(\mathscr A)$, i(A) = i(B) if and only if A and B lie in the same connected component of $\mathscr F(\mathscr A)$ [2].

Let $\mathcal{G}(\mathcal{A}/\mathcal{K})$, $\mathcal{L}(\mathcal{A}/\mathcal{K})$ and $\mathcal{R}(\mathcal{A}/\mathcal{K})$ denote the open semigroups of invertible, left (but not right), and right (but not left) invertible elements of \mathcal{A}/\mathcal{K} , respectively. The elements of

$$\mathscr{S} = \pi^{-1}(\mathscr{G}(\mathscr{A}/\mathscr{K})) \, \cup \, \pi^{-1}(\mathscr{R}(\mathscr{A}/\mathscr{K})) \, \cup \, \pi^{-1}(\mathscr{L}(\mathscr{A}/\mathscr{K}))$$

are called semi-Fredholm relative to \mathscr{A} , and the notation $H(\mathscr{S})$ and $H(\pi(\mathscr{S}))$ is used to denote the set of connected components of \mathscr{S} and $\pi(\mathscr{S})$, respectively.

We shall use the following in the proof of our main result.

PROPOSITION 1. The map $\pi: H(\mathcal{S}) \to H(\pi(\mathcal{S}))$ defined by $\pi: \mathcal{C} \to \pi(\mathcal{C})$ for \mathcal{C} in $H(\mathcal{S})$ is an isomorphism.

Proof. [3].

Essential in what follows is the notion of a cross section. Suppose f is a continuous mapping of X onto Y, where X and Y are Banach spaces. A continuous map $s: Y \rightarrow X$ is a continuous cross section of f if f(s(y)) = y for all $y \in Y$. A consequence of the theorem of Bartle and Graves [1] is that if π is the projection of \mathscr{A} onto \mathscr{A}/\mathscr{K} , then π has a continuous cross section. An immediate result of this is the following.

THEOREM 1. Let $\mathscr C$ be a component of $H(\mathscr G(\mathscr A/\mathscr K))$. Then $\mathrm{Cl}(\pi^{-1}(\mathscr C))=\pi^{-1}(\overline{\mathscr C})$.

PROOF. Since $\pi^{-1}(\overline{\mathscr{C}})$ is a closed set containing $\pi^{-1}(\mathscr{C})$, $\operatorname{Cl}(\pi^{-1}(\mathscr{C})) \subset \pi^{-1}(\overline{\mathscr{C}})$. On the other hand, if $x \in \pi^{-1}(\overline{\mathscr{C}})$, then $\pi(x) \in \overline{\mathscr{C}}$. Suppose $\{y_n\}$ in \mathscr{C} is such that $y_n \to \pi(x)$. If s is a continuous cross section of π , then $s(y_n) \to s(\pi(x)) = x + k$ for some $k \in \mathscr{K}$. But then, $s(y_n) - k \to x$, and $s(y_n) = k \in \pi^{-1}(\mathscr{C})$. Hence, $x \in \operatorname{Cl}(\pi^{-1}(\mathscr{C}))$, and $\pi^{-1}(\overline{\mathscr{C}}) = \operatorname{Cl}(\pi^{-1}(\mathscr{C}))$.

DEFINITION. A factor \mathscr{A} is said to be of type Π_{∞} if the range of Dim on $\mathscr{P}(\mathscr{A})$ is the interval $[0, \infty]$.

2. Main results. In the following, we denote by r(A) the closure of the range of the operator A. We use the same notation to indicate a closed subspace of \mathcal{H} and the orthogonal projection on this subspace.

We need the following result of Feldman and Kadison:

PROPOSITION 2. If \mathscr{A} is a factor on a separable Hilbert space, then $\mathrm{Cl}(\mathscr{G}(\mathscr{A}))$ consists of those $A \in \mathscr{A}$ such that for every $\varepsilon > 0$ there is a projection $E \in \mathscr{A}$ containing the null projection of A with $||AE|| < \varepsilon$ and $E \sim \mathscr{H} \ominus r(A(I-E))$.

Proof. [5].

Feldman and Kadison proceed to prove that if $\mathcal{A} = \mathcal{B}(\mathcal{H})$ then $A \notin \text{Cl}(\mathcal{G}(\mathcal{A}))$ if and only if A is the product of a regular operator and a partially isometric operator between subspaces of unequal codimension. For factors of type Π_{∞} , we get the following modified result.

THEOREM 2. If \mathscr{A} is a factor of type Π_{∞} on a separable Hilbert space, and if $A \in \mathscr{A}$ is such that $A \notin \mathrm{Cl}(\mathscr{G}(\mathscr{A}))$, then A is the product of a Fredholm operator relative to \mathscr{A} of index zero and a partial isometry between subspaces of unequal relative codimension.

PROOF. Suppose that $A \notin \operatorname{Cl}(\mathscr{G}(\mathscr{A}))$, and let N be the null projection of A. We have that $\operatorname{Dim} N \neq \operatorname{Dim} \mathscr{H} \ominus r(A)$, for otherwise, $N \sim \mathscr{H} \ominus r(A)$, and choosing N as the E of Proposition 2, $A \in \operatorname{Cl}(\mathscr{G}(\mathscr{A}))$. We can assume that $\operatorname{Dim} N < \operatorname{Dim} \mathscr{H} \ominus r(A)$, for, if not, we can deal with A^* since $N = \mathscr{H} \ominus r(A^*)$, and $N_{A^*} = \mathscr{H} \ominus r(A)$. Hence, $\operatorname{Dim} N < \infty$, and N is a finite projection.

If $A = U(A^*A)^{1/2}$ is the polar factorization of A [4], then U is a partial isometry mapping $r[(A^*A)^{1/2}] = r(A^*A) = \mathcal{H} \ominus N$ onto r(A). Thus, the relative codimensions of the initial and final spaces of U are unequal. It remains to be shown that $T = (A^*A)^{1/2}$ is a Fredholm operator relative to \mathcal{A} of index zero.

Since $N=N_T$ has finite relative dimension, it suffices to show that there exists a finite projection E such that the range of I-E is contained in the range of T. Since $A \notin Cl(\mathscr{G}(\mathscr{A}))$, there exists, by Proposition 2, a constant k>0 such that if E is a projection in \mathscr{A} with $||AE|| \leq k$, then E is not

equivalent to $\mathcal{H}\ominus r[A(I-E)]$. If E is the spectral projection for T corresponding to the interval [0,k], then $E\in \mathscr{A}$ [4], and $||AE|| = ||UTE|| \le ||U|| ||TE|| \le k$. Since the subspace E contains N_T [2], E is not equivalent to $\mathscr{H}\ominus r[A(I-E)]$. We claim that E is a finite projection. Assume that E is infinite. Since $T(I-E) \ge k(I-E)$, the operator T maps the space I-E onto itself. Furthermore, we have that

$$r[U(I-E)] = r[UT(I-E)] = r[A(I-E)].$$

But if E is infinite and N finite, the space r[U(E-N)] is infinite. Since N is contained in E, I-E is orthogonal to E-N, and because U is an isometry on $\mathcal{H} \ominus N$, r[U(E-N)] is also orthogonal to r[U(I-E)]. Hence, $\mathcal{H} \ominus r[U(I-E)] = \mathcal{H} \ominus r[A(I-E)]$ is infinite. Since \mathcal{H} is separable, it follows that E is equivalent to $\mathcal{H} \ominus r[A(I-E)]$, which is impossible. Hence, E is finite. We also have that $r(I-E) \subseteq r(T)$ [2]. Therefore, E is Fredholm relative to E, and since E is positive, its index is zero.

COROLLARY 1. If $A \in \mathcal{A}$ satisfies the hypothesis of the theorem, then A is semi-Fredholm relative to \mathcal{A} with $i(A) \neq 0$.

PROOF. By the theorem, A is the product of a partial isometry U between subspaces of unequal relative codimension and a Fredholm operator relative to \mathcal{A} of index zero. Since \mathcal{H} is separable, one of these subspaces has finite relative codimension. Therefore, U is semi-Fredholm relative to \mathcal{A} with $i(U) \neq 0$, and the same must be true for A.

Let $\mathscr S$ be the set of semi-Fredholm operators in a factor $\mathscr A$ of type Π_∞ on a separable Hilbert space. Noting for $A\in\pi^{-1}(\mathscr L(\mathscr A/\mathscr K))$ (resp. $\pi^{-1}(\mathscr R(\mathscr A/\mathscr K))$) that $\mathrm{Dim}\ N_A<\infty$ (resp. $\mathrm{Dim}\ N_A^*<\infty$) [2], we write $\mathscr F_\infty=\pi^{-1}(\mathscr L(\mathscr A/\mathscr K))$ and $\mathscr F_{-\infty}=\pi^{-1}(\mathscr R(\mathscr A/\mathscr K))$. Thus, the components of $\mathscr S$ are the sets of semi-Fredholm operators $\mathscr F_\alpha$ for each fixed α ($-\infty\leq\alpha\leq\infty$). We use the notation

$$\mathscr{F}^{\alpha} = \bigcup \{ \mathscr{F}_{\beta}, \beta \neq \alpha, -\infty \leq \beta \leq \infty \}.$$

The following is our main result.

THEOREM 3. The uniform closure of \mathcal{F}_{α} in a factor \mathcal{A} of type Π_{∞} on a separable Hilbert space is the complement of \mathcal{F}^{α} in \mathcal{A} .

Proof. It must be shown that

$$\mathcal{F}_{\alpha} = \mathcal{A} - \mathcal{F}^{\alpha}, \quad -\infty \leq \alpha \leq \infty.$$

But $\mathcal{F} \subset_{\alpha} \mathcal{A} - \mathcal{F}^{\alpha}$, and $\mathcal{A} - \mathcal{F}^{\alpha}$ is closed. Thus, $\overline{\mathcal{F}}_{\alpha} \subset \mathcal{A} - \mathcal{F}^{\alpha}$. We prove the reverse inclusion.

We treat first the case $\alpha=0$. If $A\in \mathcal{G}(\mathcal{A})$, then A is Fredholm relative to \mathcal{A} of index zero. Hence, $\mathcal{G}(\mathcal{A})\subset \mathcal{F}_0$, and $\mathrm{Cl}(\mathcal{G}(\mathcal{A}))\subset \mathcal{F}_0$. By Corollary 1, the complement of $\mathrm{Cl}(\mathcal{G}(\mathcal{A}))$ in \mathcal{A} -consists of those operators of \mathcal{A} that are semi-Fredholm relative to \mathcal{A} of index other than zero. Thus, $\mathcal{A}-\mathrm{Cl}(\mathcal{G}(\mathcal{A}))\subset \mathcal{F}_0$, so that $\mathcal{A}-\mathcal{F}^0\subset \mathrm{Cl}(\mathcal{G}(\mathcal{A}))\subset \mathcal{F}_0$, and $\mathcal{A}-\mathcal{F}^0=\mathcal{F}_0$, proving the theorem for $\alpha=0$.

Let \mathscr{G}_1 denote the component of the identity in $\mathscr{G}(\mathscr{A}/\mathscr{K})$, and let \mathscr{C} be an element of $H(\mathscr{G}(\mathscr{A}/\mathscr{K}))$. Since $\mathscr{C}=g\mathscr{G}_1$ for some $g\in\mathscr{G}(\mathscr{A}/\mathscr{K})$, and since multiplication by g is a homeomorphism, $\overline{\mathscr{C}}=g\overline{\mathscr{G}}_1$. By Theorem 1, $\mathrm{Cl}(\pi^{-1}(\mathscr{C}))=\pi^{-1}(\overline{\mathscr{C}})$ for each \mathscr{C} in $H(\mathscr{G}(\mathscr{A}/\mathscr{K}))$. Therefore, by Proposition 1,

$$\mathscr{F}_0 \subset \pi^{-1}(\overline{\mathscr{G}}_1) = \overline{\pi^{-1}(\mathscr{G}_1)} \subset \mathscr{A} - \mathscr{F}^0 = \overline{\mathscr{F}}_0,$$

and since $\pi^{-1}(\overline{\mathscr{G}}_1)$ is closed, $\pi^{-1}(\overline{\mathscr{G}}_1) = \overline{\mathscr{F}}_0$. It follows that

$$\overline{\mathcal{G}}_1 = \mathcal{G}_1 \cup (\mathcal{A}/\mathcal{K} - (\mathcal{G} \cup \mathcal{L} \cup \mathcal{R})),$$

and

$$\begin{split} g\overline{\mathcal{G}}_1 &= \overline{\mathcal{C}} = g\mathcal{G}_1 \cup (\mathcal{A}/\mathcal{K} - (\mathcal{G} \cup \mathcal{L} \cup \mathcal{R})) \\ &= \mathcal{C} \cup (\mathcal{A}/\mathcal{K} - (\mathcal{G} \cup \mathcal{L} \cup \mathcal{R})). \end{split}$$

Thus by Theorem 1,

$$\overline{\mathscr{F}}_{\alpha} = \overline{\pi^{-1}(\mathscr{C})} = \pi^{-1}(\overline{\mathscr{C}}) = \mathscr{A} - \mathscr{F}^{\alpha},$$

which is the desired result.

COROLLARY 2. If $\mathscr A$ is a factor of type Π_∞ on a separable Hilbert space, then the Breuer index has no continuous extension to $\mathscr A-\mathscr S$.

PROOF. If $A \in \mathcal{A} - \mathcal{S}$ then each neighborhood of A contains Fredholm operators relative to \mathcal{A} of every index.

Consider the C^* -algebra $\mathscr{A}|\mathscr{K}$. If s is a continuous cross section of $\mathscr{A}|\mathscr{K}$ into \mathscr{A} , and if i is the Breuer index on \mathscr{F} , then $i'=i\circ s$ is an index on $\mathscr{A}|\mathscr{K}$. If $x\notin\mathscr{G}(\mathscr{A}|\mathscr{K})$, then $s(x)\in\mathscr{A}-\mathscr{F}$. Hence, every neighborhood of s(x) contains Fredholm operators relative to \mathscr{A} of every finite index. By the continuity of π , $x=\pi(s(x))$ contains invertibles of $\mathscr{A}|\mathscr{K}$ of every finite index. We have proved the following.

THEOREM 4. If i' is the index on $\mathcal{G}(\mathcal{A}|\mathcal{K})$ induced by the Breuer index on \mathcal{F} , then i' has no continuous extension to $\mathcal{A}|\mathcal{K}-\mathcal{G}(\mathcal{A}|\mathcal{K})$.

REFERENCES

- 1. R. G. Bartle and L. M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400-413. MR 13, 951.
- 2. M. Breuer, Fredholm theories in von Neumann algebras. I, II, Math. Ann. 178 (1968), 243-254; Math. Ann. 180 (1969), 313-325. MR 38 #2611; 41 #9002.

- 3. L. A. Coburn and A. Lebow, Algebraic theory of Fredholm operators, J. Math. Mech. 15 (1966), 577-584. MR 33 #569.
- 4. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Cahiers scientifiques, fasc. 25, Gauthiers-Villars, Paris, 1957. MR 20 #1234.
- 5. J. Feldman and R. V. Kadison, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc. 5 (1954), 909-916. MR 16, 935.
- 6. M. A. Naimark, *Normed rings*, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; 22 #1824.

Department of Mathematics, Bernard M. Baruch College, City University of New York, New York, New York 10010