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Abstract. In this paper we show that the analytic index has no

continuous extension to those operators in a factor of type II,,

on a separable Hubert space which are not semi-Fredholm in the

Breuer sense. A similar result has already been proved by Coburn

and Lebow [3] for factors of type Ix. Here we use Breuer's genera-

lized Fredholm theory to extend their result to the more general

setting.

1. Definitions and preliminaries. As usual, ^(Jf ) denotes the algebra

of all bounded operators on the separable Hubert space Jf. A *-subalgebra

of á?pf) that is closed in the weak operator topology is called a von

Neumann algebra. If the center of sé consists precisely of scalar multiples

of the identity, then sé is called a factor. For E, Fin 0*ise), the set of all

projection operations in sé, we write E^FoEF=E. The equivalence

relation ~ on 0>ise) is defined by £~F if and only if there is a partially

isometric operator U in sé such that E=U*U and F=UU*. Finally,

an order relation ^ on SPisé) is given by £;< F if and only if there is an

F' in g?isé) such that E~F'^F.

A projection operator E is said to be finite if it is not equivalent to

any F e0>ise) where F^E and £#£. Otherwise, £ is said to be infinite.

If the identity of a von Neumann algebra sé is a finite (infinite) projection,

then sé is called finite (infinite).

We follow Breuer's generalization of the concepts of compact and Fred-

holm operators to a von Neumann algebra sé. For B e sé

NB = sup{£ e 0>isé) :BE = 0}

and

RB = inf{£ e 0>ise) :EB = S)

are called the null projection and range projection of B, respectively.

We call B finite if RB is a finite projection. If Jf is the norm closure of the
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set of finite elements of sé', then Jf is a closed two-sided ideal in sé. The

elements of Jf are said to be compact relative to sé.

Definition. Let sé be a factor. An operator B e sé is said to be

Fredholm relative to sé if

(i) NB is a finite projection, and

(ii) there is a finite projection £ in sé such that the range of I—E is

contained in the range of B.

Let^isé) be the set of Fredholm elements relative to a factor sé, and

let Dim denote some fixed relative dimension function on sé [6]. It

follows from the definitions that if B is Fredholm relative to sé then

Dim NB and Dim NB. ate both finite. We can thus define the index, i,

of a Fredholm element B relative to sé by

i(B) = Dim NB - D im NB*.

The classical Fredholm theory is generalized by Breuer to compact and

Fredholm operators relative to a factor. Specifically, if sé is an infinite

factor, then Be sé is Fredholm relative to sé if and only if 7r(5) is inver-

tible in séjjf; for A, B e&isé), ¡iA)=iiB) if and only if A and B lie

in the same connected component of ¿Fisé) [2].

Let ^isé¡Jf), ^isé¡X) and 0tisé\X) denote the open semigroups of

invertible, left (but not right), and right (but not left) invertible elements

of jé/Jf, respectively. The elements of

ST = ir\9{st\jr)) u Tr-\misélJf)) u Tr-H-S^/Jf))

are called semi-Fredholm relative to sé, and the notation HiSf) and

Hi-niif)) is used to denote the set of connected components of Sf and

■niSP), respectively.

We shall use the following in the proof of our main result.

Proposition 1. The map -n: Hi^^Hi^)) defined by tt:<íí->-

tr(fß) for ^ in H(Sf) is an isomorphism.

Proof.    [3].

Essential in what follows is the notion of a cross section. Suppose/is

a continuous mapping of X onto Y, where X and Y are Banach spaces.

A continuous map s: Y-+X is a continuous cross section of / if

f(s(y))=y for ally e Y. A consequence of the theorem of Bartle and Graves

[1] is that if 77 is the projection of sé onto séj^í, then 7r has a continuous

cross section. An immediate result of this is the following.

Theorem 1. Let ^ be a component ofH(^(sé\X)). Then Cli-n-1^) =

77-Hn
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Proof. Since tt-1^) is a closed set_containing 7r-1(í?), Cl(7r--1(fé))c:

tt-\^). On the other hand, if xetr-1^), then iT(x)eW. Suppose {yn}

in ^ is such that yn-+-nix). If í is a continuous cross section of 77, then

siyn)-*sinix))=x+k for some k e Jf. But then, siyn)—k—>-x, and siyn) =

k e tt-1^). Hence, x e Clfr-1^)), and -n-xi(é)=Q\i-n-^)).

Definition. A factor sé is said to be of type II œ if the range of Dim

on SPisé) is the interval [0, 00].

2. Main results. In the following, we denote by r(^) the closure of

the range of the operator A. We use the same notation to indicate a

closed subspace of Jf and the orthogonal projection on this subspace.

We need the following result of Feldman and Kadison:

Proposition 2. If sé is a factor on a separable Hubert space, then

Cli^isé)) consists of those A e sé such that for every e>0 there is a

projection E e sé containing the null projection of A with \\AE\\<e and

Er^M'QriAil-E)).

Proof.    [5].

Feldman and Kadison proceed to prove that if sé=36LW) then A $

divisé)) if and only if A is the product of a regular operator and a par-

tially isometric operator between subspaces of unequal codimension.

For factors of type II^, we get the following modified result.

Theorem 2. If sé is a factor of type II œ on a separable Hubert space,

and if A e sé is such that A $ C\(fS(séy), then A is the product of a Fredholm

operator relative to sé of index zero and a partial isometry between sub-

spaces of unequal relative codimension.

Proof. Suppose that A $ Q\(fS(sé)), and let N be the null projection of

A. We have that Dim TW Dim JifQriA), for otherwise, N~JferiA),

and choosing N as the £ of Proposition 2, A e Qlif&isé)). We can assume

that Dim Ar<Dim 3t?QriA), for, if not, we can deal with A* since

N=Jf?eriA*), and NA.=JfQriA). Hence, Dim/V<oo, and 2V" is a

finite projection.

If A = UiA*A)1/2 is the polar factorization of A [4], then U is a partial

isometry mapping rliA*Ay>2]=riA*A)=Jí?QN onto riA). Thus, the

relative codimensions of the initial and final spaces of U are unequal. It

remains to be shown that T=iA*A)112 is a Fredholm operator relative

to sé of index zero.

Since N=NT has finite relative dimension, it suffices to show that there

exists a finite projection £ such that the range of I—E is contained in the

range of T. Since A $ Ql(fS(sé)), there exists, by Proposition 2, a constant

7c>0 such that if £ is a projection in sé with ||/1£||^A:, then £ is not
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equivalent to ¿F QrlAil— £)]. If £ is the spectral projection for T cor-

responding to the interval 10, k], then £ e sé [4], and \\AE\\ = \\UTE\\^

|| U\\ || TE\\ _rc. Since the subspace £ contains NT [2], £ is not equivalent

to JtifOrlAU— £)]. We claim that £ is a finite projection. Assume that £

is infinite. Since F(/—£)_rV(/—£), the operator F maps the space I—E

onto itself. Furthermore, we have that

r[i/(/ - £)] = r[C/r(/ - £)] = rL4(/ - £)].

But if £ is infinite and N finite, the space r[t/(£—TV)] is infinite. Since jV

is contained in £, I—E is orthogonal to E—N, and because £/ is an isom-

etry on J^QN, rlUiE—N)] is also orthogonal to /•[[/(/-£)]. Hence,

3>ferlUiI-E)]=jeerlAiI-E)] is infinite. Since Jt is separable, it

follows that E is equivalent to JfQrlAil— £)], which is impossible.

Hence, £ is finite. We also have that /•(/—£)(=,• (F) [2]. Therefore, Fis

Fredholm relative to sé, and since T is positive, its index is zero.

Corollary 1. If A e sé satisfies the hypothesis of the theorem,

then A is semi-Fredholm relative to sé with i(A)^0.

Proof. By the theorem, A is the product of a partial isometry U

between subspaces of unequal relative codimension and a Fredholm

operator relative to sé of index zero. Since J*f is separable, one of these

subspaces has finite relative codimension. Therefore, U is semi-Fredholm

relative to sé with i(U)¿¿0, and the same must be true for A.

Let Sf be the set of semi-Fredholm operators in a factor sé of type II „

on a separable Hubert space. Noting for A e -n-x(<£'(sé\X')) (resp.

■n-\&isé\tf))) that DimA^<oo (resp. Dim/VXco) [2], we write

^ra, = TT-1i^isélJf)) and F_x=iT~1imiséIJf)). Thus, the components

of if are the sets of semi-Fredholm operators J^ for each fixed a

(— oo5ia_ oo). We use the notation

^"  =\J   {&ß, ß^0i,-OD^ß^O0}.

The following is our main result.

Theorem 3. The uniform closure of ' &"„ in a factor sé of type Uœ on

a separable Hilbert space is the complement of F* in sé.

Proof.    It must be shown that

^a = sé - &",        - oo ^ a ^ co.

But ^^cSé-SF*, and sé-^* is closed. Thus, ^a<= sé-F*. We prove

the reverse inclusion.
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We treat first the case a=0. If A e 'Sisé), then A is Fredholm relative

to sé of index zero. Hence, ^(sé)c^0, and Cli&(jé))<=&0. By Corol-

lary 1, the complement of Cl(^'(sé)) in .¿/-consists of those operators

of sé that are semi-Fredholm relative to sé of index other than zero.

Thus, sé-Q\(fS(sé))<^^, so that ^-^°cCI(á?(^))c/0, and

sé—&ro=^fj, proving the theorem for a=0.

Let Sx denote the component of the identity in <S(sé¡X'), and let ^

be an element of H(S(sélJf)). Since <ë=g&x for_some g e ^isé/Jf),

and since multiplication by g is a homeomorphism, cé¡=g(&x. By Theorem

1, Cl(77-1('^)) = ^~1(^) for each if in H(S(sé\X)). Therefore, by Propo-

sition 1,

and since 77^(^1) is closed, tt~1('S1)=^ç). It follows that

Px = flFj u (sél-yf - i<§ u se u 3t))t
and

g#j = <T = g^x u (sé\yr - (^ u js? u á?))

= <¿í u (j//jf - (3? u jSf u á?)).

Thus by Theorem 1,

^ = ir\<ig) = tt-\V) = Sé - W,

which is the desired result.

Corollary 2. If sé is a factor of type II ^ on a separable Hilbert

space, then the Breuer index has no continuous extension to sé — Sf.

Proof. If A e sé—Sf then each neighborhood of A contains Fredholm

operators relative to sé of every index.

Consider the C*-algebra sé\$T. If s is a continuous cross section of

sé ¡CUT into sé, and if i is the Breuer index on ¡F, then i'—i ° s is an index

on sé\X. If x $ 'S(sélX'), then six) e sé-F. Hence, every neigh-

borhood of s(x) contains Fredholm operators relative to sé of every finite

index. By the continuity of 77, x=n(s(x)) contains invertibles of se\0^ of

every finite index. We have proved the following.

Theorem 4. If i' is the index on 'Sisé/Jtí") induced by the Breuer index

on !F, then ¡" has no continuous extension to sé [CAT — 'S (sé \Ctf~).
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