A NONSTATIONARY ITERATIVE PROCESS FOR NONEXPANSIVE MAPPINGS

C. W. GROETSCH

ABSTRACT. It is shown that a nonstationary analogue of an iterative process of Kirk serves to approximate fixed points of compact nonexpansive mappings defined on convex subsets of a uniformly convex space.

In a recent note Kirk [1] investigated an iterative process for approximating fixed points of nonexpansive mappings defined on convex subsets of a uniformly convex Banach space. A mapping T is called *nonexpansive* if $||Tx-Ty|| \le ||x-y||$ for each x and y in the domain of T.

Specifically, the iterative process studied by Kirk is given by

$$(1) x_{n+1} = \alpha_0 x_n + \alpha_1 T x_n + \dots + \alpha_k T^k x_n$$

where $\alpha_i \ge 0$, $\alpha_1 > 0$ and $\sum_{i=0}^k \alpha_i = 1$.

It is the purpose of this note to show that a nonstationary analogue of the process (1) also serves to approximate fixed points of T under certain circumstances. We will make use of the fact that in a uniformly convex space with modulus of convexity δ , for given $\varepsilon > 0$, d > 0 and $\alpha \in [0, 1]$ the inequalities

$$||w|| \le ||u|| \le d$$
 and $||u_n - w|| \ge \varepsilon$

imply that

$$\|(1-\alpha)u + \alpha w\| \leq \|u\| \left[1 - 2\delta(\varepsilon/d)\min(\alpha, 1-\alpha)\right]$$

(see e.g. [2, p. 4]).

LEMMA 1. If $\{u_n\}$ and $\{w_n\}$ are sequences in a uniformly convex space with $\|w_n\| \le \|u_n\|$ and

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n w_n \qquad (0 \le \alpha_n \le 1)$$

Received by the editors May 29, 1973.

AMS (MOS) subject classifications (1970). Primary 47H10, 47H99; Secondary 65J05.

Key words and phrases. Nonexpansive mapping, fixed point, uniformly convex space, iterative process.

where $\sum \min(\alpha_n, 1-\alpha_n) = \infty$, then $0 \in \operatorname{cl}\{u_n-w_n\}$ (cl A denotes the (strong) closure of the set A).

PROOF. Suppose $||u_n - w_n|| \ge \varepsilon$ for all n, then

$$||u_{n+1}|| = ||(1 - \alpha_n)u_n + \alpha_n w_n||$$

$$\leq ||u_n|| [1 - 2\delta(\varepsilon/||u_1||) \min(\alpha_n, 1 - \alpha_n)].$$

Inductively we have

$$||u_n|| \le ||u_1|| \prod_{i=1}^{n-1} [1 - 2\delta(\varepsilon/||u_1||)\min(\alpha_i, 1 - \alpha_i)]$$
 for $n > 1$.

But since $\sum \min(\alpha_i, 1-\alpha_i) = \infty$, the product on the right diverges to zero and hence $\lim ||u_n|| = \lim ||w_n|| = 0$ and this contradiction completes the proof.

Let the sequences $\{\alpha_{ij}\}_{i=0}^{\infty}$ $(j=0, 1, \dots, k)$ satisfy $0 \le \alpha_{ij}, 0 < \alpha \le \alpha_{i1}, \sum_{j=0}^{k} \alpha_{ij} = 1$ for each i and $\sum \min(\alpha_{i0}, 1 - \alpha_{i0}) = \infty$. Define operators S_i by

$$S_i = \alpha_{i0}I + \alpha_{i1}T + \cdots + \alpha_{ik}T^k, \qquad i = 0, 1, 2, \cdots$$

A nonstationary analogue of (1) is the process

(2)
$$x_{n+1} = S_n x_n, \quad n = 0, 1, 2, \cdots$$

Note that if p is a fixed point of T then

(3)
$$||x_{n+1} - p|| = \left| \sum_{j=0}^{k} \alpha_{nj} (T^{j} x_{n} - T^{j} p) \right|$$

$$\leq ||x_{n} - p||$$

and hence to establish the convergence of $\{x_n\}$ to a fixed point p it is enough to show that some subsequence of $\{x_n\}$ converges to p.

LEMMA 2. Let K be a convex subset of a uniformly convex space. If T is a nonexpansive mapping of K into itself which has at least one fixed point and $\{x_n\}$ is defined by (2), then $0 \in \operatorname{cl}\{x_{n+1} - x_n\}$.

PROOF. Let p be a fixed point of T and let

$$u_n = x_n - p$$
 and $w_n = \frac{1}{1 - \alpha_{n,0}} \sum_{i=1}^k \alpha_{n,i} (T^i x_n - T^i p)$.

We then have

$$u_{n+1} = S_n x_n - p = \alpha_{n0} u_n + (1 - \alpha_{n0}) w_n$$

and $||w_n|| \le ||u_n||$ since T is nonexpansive. Thus, by Lemma 1,

 $0 \in \operatorname{cl}\{u_n - w_n\}$. Also

$$\begin{aligned} \|u_n - w_n\| &= \left\| x_n - p - \frac{1}{1 - \alpha_{n0}} \sum_{j=1}^k \alpha_{nj} T^j x_n + p \right\| \\ &= \left\| x_n - \frac{1}{1 - \alpha_{n0}} \sum_{j=0}^k \alpha_{nj} T^j x_n + \frac{\alpha_{n0}}{1 - \alpha_{n0}} x_n \right\| \\ &= \frac{1}{1 - \alpha_{n0}} \|x_n - x_{n+1}\| \ge \|x_n - x_{n+1}\| \end{aligned}$$

and therefore there is a subsequence $\{x_{n_i}\}$ with $x_{n_i+1}-x_{n_i}\rightarrow 0$.

We now give a generalization of Kirk's result on strong convergence of the sequence $\{x_n\}$ defined by (1).

THEOREM. Suppose, in addition to the hypotheses of Lemma 2, that T is compact. Then for each $x_1 \in K$ the sequence $\{x_n\}$ defined by (2) converges to a fixed point of T.

PROOF. By Lemma 2 there is a subsequence $\{x_{n_i}\}$ with $x_{n_i+1}-x_{n_i}\to 0$. Since $\alpha_{n_i,j}\in [0,1]$ and $\alpha_{n_i,1}\geq \alpha>0$ we may assume by successively choosing subsequences $\{\alpha_{n_i,j}\}$ of the sequences $\{\alpha_{n_i,j}\}$ that $\lim_{\nu}\alpha_{n_{\nu},j}=\alpha_{j}\in [0,1]$ where $\alpha_1>0$. Let

$$S = \alpha_0 I + \alpha_1 T + \cdots + \alpha_k T^k.$$

We then have

$$x_{n_{\nu}} - Sx_{n_{\nu}} = x_{n_{\nu}} - S_{n_{\nu}}x_{n_{\nu}} + S_{n_{\nu}}x_{n_{\nu}} - Sx_{n_{\nu}}$$

where $x_{n_v} - S_{n_v} x_{n_v} = x_{n_v} - x_{n_v+1} \to 0$.

If p is a fixed point of T then we have by use of (3)

$$\|T^{j}x_{n_{y}}-p\|=\|T^{j}x_{n_{y}}-T^{j}p\|\leqq\|x_{n_{y}}-p\|\leqq\|x_{1}-p\|.$$

Hence if we set $M = ||x_1 - p|| + ||p||$, then $||T^j x_{n_v}|| \le M$ for all ν and each $= 0, \dots, k$. Therefore

$$\begin{split} \|S_{n_{\mathbf{v}}} \mathbf{x}_{n_{\mathbf{v}}} - S \mathbf{x}_{n_{\mathbf{v}}} \| &= \left\| \sum_{j=0}^{k} (\alpha_{n_{\mathbf{v}} j} - \alpha_{j}) T^{j} \mathbf{x}_{n_{\mathbf{v}}} \right\| \\ &\leq M \sum_{j=0}^{k} |\alpha_{n_{\mathbf{v}} j} - \alpha_{j}| \to 0 \quad \text{as } v \to \infty. \end{split}$$

It follows that $x_{n_v} - Sx_{n_v} \to 0$ as $v \to \infty$. Since T is compact I - S maps closed bounded subsets into closed subsets (see Kirk's argument in the Corollary to Theorem 2 of [1]). By (3) $\operatorname{cl}\{x_n\}$ is bounded and closed and we have shown that $0 \in (I - S)\operatorname{cl}\{x_n\}$. Thus there is a $z \in \operatorname{cl}\{x_n\}$ with

z-Sz=0. By [1, Theorem 1] z is a fixed point of T and since $z \in cl\{x_n\}$ it follows from (3) that $x_n \rightarrow z$ as $n \rightarrow \infty$, completing the proof.

REFERENCES

- 1. W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J. 12 (1971), 6-9. MR 45 #7553.
- 2. Z. Opial, Nonexpansive and monotone mappings in Banach spaces, Lecture Notes 67-1, Division of Applied Mathematics, Brown University, Providence, R.I., 1967.

Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221