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AN EXAMPLE  CONCERNING  CONTINUOUS  SELECTIONS

ON INFINITE-DIMENSIONAL  SPACES1

CARL P.  PIXLEY2

Abstract. This paper shows that the conclusion of E. Michael's

Selection Theorem 1.2 [Continuous selections. II, Ann. of Math.

(2) 64 (1956), 562-580. MR 18, 325.] does not necessarily hold if
the hypotheses are modified by dropping the assumption that the

domain of the lsc carrier is of finite dimension, and strengthening

the equilocal and global mapping conditions on the collection of

images under the carrier.

1. Introduction. This paper investigates one possibility of extending

the selection theory for finite-dimensional spaces presented in Michael

[6] to infinite-dimensional spaces. Let X and Y be topological spaces and

let <f> be a function (called a carrier) whose domain is X and whose range

is a subset 0* of 2r (the collection of nonempty closed subsets of Y).

The selection problem is the following. What conditions on X, Y, ¡j> and Sf

will guarantee the existence of a continuous function /:X—> Y such that

fix) e <f>ix) for every x e XI The continuous function/is called a selection

for <f>.
For reasons given in Michael [5], we assume that the carrier <f> is

lsc ilower semicontinuous), meaning that if U is an open subset of Y,

then {x e X:<f>ix) C\U^ 0} is an open subset of AT. The selection theory of

Michael [6] requires 0* to satisfy equilocal mapping conditions commen-

surate with the dimension of X. The collection 0?<=12Y is equi-LCn if

for every point y e \J 01 and neighborhood U of y in Y, there exists a

neighborhood V of y in Y such that, for every Se 0^ and k^n, any con-

tinuous map of a ic-sphere into Vr\S is null-homotopic in UnS. A space
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S is C" if, for every k^n, any map of a Ar-sphere into S is null-homotopic

in S. The main result of Michael [6] is the following:

Theorem. Let X be a paracompact space, A^X closed with dim X^

n + l,3 Y a complete metric space, 0'<^2Y equi-LCn, and </):X-^-0' lsc.

Then every selection for <j>\A can be extended to a selection for <f>\U for

some open U^A. If, in addition, every S e 0* is Cn, then one can take

U=X.

The following question immediately arises. Will the above assertion

remain true if we drop the hypothesis that X is finite dimensional and

require 0^ to satisfy very strong equilocal and global extension properties ?

A metric space 5 is said to be an AE iabsolute extensor) if, for every

metric space X and continuous function/mapping a closed subset A of X

into S, there exists a continuous extension of/mapping all of X into

S. iNote. An AE is often called an AR (metric).) A collection 0><=12Y is

uniformly equi-LAE (local absolute extensor) if for every e>0 there exists

a <5>0 such that if/is a continuous function from a closed subset A of a

metric4 space X into any S e 0* with diam(/(.4))<<5, then there exists a

continuous extension /: X-*-S off with diam(/(Ar))<e. Clearly, S is AE

implies S is C" for all n, and 01 is uniformly equi-L^F implies SP is

equi-LC" for all n.

Let Q denote the Hubert cube, i.e., the set of mappings of the positive

integers co into [0, 1], given the product topology. We use the metric

dix, j>)=2,™ i \x{—yt\ ■ 2~\ The following result is relevant to the above

question.

Theorem 1.1.    There exists a lsc carrier <j>:Qs-2Q such that

(1) the collection <j>iQ) is uniformly equi-LAE,

(2) if x e Q, then <f>ix) is homeomorphic to a point, or to a k-cell ifor

some rc_l), or to Q, and

(3) there is no selection for <f> and, in fact, for some p e Q there is no

selection for <j> restricted to any neighborhood of p.

To prove this theorem we modify a construction due to K. Borsuk

[1, pp. 124-127] of a locally contractible compact metric space which is

not an ANR.

3 We define dim X^n + l to mean that every open cover <W of X has an open locally

finite refinement y such that any collection of n + 3 many distinct elements ofi^" have

no point in common.

4 If "7Vnormal" is substituted for "metric" here, Theorem 1.1 remains valid. The

crucial part, (2) implies (1), of Theorem 3.1 remains valid, if the second occurrence of

"metric" in the definition of ANE is changed to "7Vnormal".
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2. The carrier <f>. In this section we define <f>. We verify that <f> is

lsc and that condition (2) of Theorem 1.1 holds.

For each integer fe>2,1«

Ek=\xeQ:-< x, < - and x.: = 0 for i > k + 1
[ k+l~ k !

and let

Xk =  xe£t:x! el-,-
\ \k+ 1   k

or x¡ e {0, 1} for some i with 2 < i a" Ac + 11.

Notice that {x e Xk:x2= 1} is a fc-cell, and that, for each r with 0_>< 1,

the set {x e Xk:x2=r} is a (Ac—l)-sphere. Hence Xk is a Ac-cell. Define

Xm={x e Q:xx=0}, and let Xk=Ek-Xk.

Define 4>:Q-+2Q by

¿(*) = {*}   if x e U {X:2 = /} u Xm,

= Xk    if x e Á\,

= Q     otherwise.

Condition (2) of Theorem 1.1 holds.

To see that <p is lsc, consider A==|J {F¡:2^í'}UA'ti). Since X is closed in

Q, and <f>ix) = Q for each xeQ—X, it is sufficient to show that <f>\X

is lsc. We need to show that if x0 e X and p e <t>ix0) and p belongs to open

set U, then A = {x e X:<pix)C\Uj¿0} contains x0 as an interior point

(in X). We distinguish the three possibilities:

(1) If peXi—iXi_1KJX(+x), then x^eXi or x0=p. In either case,

x0 is interior to X¡ \J{UC\Xt)^A.

(2) If p e X{ rili+1, then x0=p, or x0 e .?,, or x0 e j?j+1. In each case,

x0 is interior to X¡ u£i+l u(C/n(A'i (jXi+x))^A.

(3) If p e Xa, then />=x-0. In this case, there exists an N such that

U C\Xk^t 0 for all k^N. Therefore x0 is interior to t/n(lj {Ek:N^k} u

A-JS/1.
The carrier t/> is therefore lsc.

3. A characterization of the uniformly equi-F^F property.5 In this

section we obtain a condition equivalent to the condition that a collection

0' is uniformly equi-LAE. A metric space S is called an ANE iabsolute

neighborhood extensor) if, for every metric space A" and continuous function

6 This section was suggested by the referee. His proof of Theorem 3.1 considerably

shortened the author's original proof that <j>(Q) is uniformly ec\\ii-LAE.

or x2 = 1
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/mapping a closed subset A of X into S, there exists a continuous extension

off mapping some neighborhood of A into S. Such a space is frequently

called an ANR (metric) in the literature. Let F be a metric space and

SP=2Y. We define SP to be uniformly equi-LC (locally contractible) if it

is true that for every e>0 there exists <5>0 such that, if S e 0* and p e S,

then Nsip)C\S is contractible over a subset of S having diameter <e.

Theorem 3.1. Let Y be a metric space and SP*^L2Y. The following

conditions are equivalent:

(1) The collection S* is uniformly equi-LAE.

(2) Each S e 0* is an ANE and 0* is uniformly equi-LC.

Proof. (1) implies (2). Suppose that 01 is uniformly equi-LAE. If

S £ SP then every point of S has a neighborhood (in S) which is an ANE.

This implies that S is an ANE [7, Proposition 4.1].

Now suppose £>0 is given. Let ô illustrate that SP is uniformly equi-

LAE. Then (5/3 illustrates the uniformly equi-LC property for s: Let

p e S e 0> and let A=Ns/3(p). We define f.Ax{0, 1}^5 by fix, 0)=x
and/(x, l)=p for each x e A. Since Ax{0, 1} is a closed subset of the

metric space /áx [0,1], and since diam(/L4)):i2<5/3, there is a con-

tinuous function/:/! x [0, l]s~S such that diam(/(/i x [0, l]))<e.

(2) implies (1). Let e>0 be given, and let <5>0 illustrate that SP is

uniformly equi-LC. Then ô also illustrates that SP is uniformly equi-LvlF:

In fact, suppose that X is metrizable, A^X closed, SeS*, f:A-*-S

continuous, and diam(/(/4))<rS. Choose y efiA), and let V=Nsiy)C\S.

Then V is open in S, and therefore an A NE (every open subset of an ANE

is an ANE). Therefore / continuously extends to a neighborhood U of A

into V. By assumption, Fis contractible overasubsetZ of S of diameter <e.6

Lemma 3.2 (below) insures that/can be extended to a continuous g : X-+Z,

which finishes the proof of the theorem.

The proof of the following lemma is almost identical to that of the

slightly weaker Theorem 12.3 of Hanner [3].

Lemma 3.2. Suppose A is a closed subset of normal space X, U is

an open neighborhood of A, Y is contractible in space Z, and f. U-+Y is

continuous. Thenf\A can be extended to a continuous g:X-*Z.

Proof. Let F be a neighborhood of X—U such that Vr\A=0.

Let A:Af->-[0, 1] be continuous such that A(/1)=0 and A(P)=1. Let

H: Yx [0, l]s-Z illustrate that Y is contractible in Z to a point, say p.

* The referee observed that if one applies Borsuk's homotopy extension theorem

[1, (8.1), p. 94] to an e-small open neighborhood of Z, the proof is finished.
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Define g:X-+Z by g(x)=p if is s f, and g(x)=H(ßx), h(x)) if x e U.
One easily sees that g is the desired continuous function.

4. The collection <j>(Q) is uniformly equi-LAE. We verify that <j)(Q)^2Q

satisfies condition (2) of Theorem 3.1. Since each S e (f>(Q) is a point, or

the Hubert cube, or a finite-dimensional cell, it is an ANE (in fact, an AE).

This standard result is a corollary [1, IV (7.2), p. 92] of the Tietze extension

theorem.

Lemma 4.1.    The collection <f>(Q) is uniformly equi-LC.

Proof. Let s>0 be given, and choose an integer m>2 such that

2~m<\s; also choose a positive y<2~'"l+1). Let k^m and p e Xk; we

show that Ny(p) (~\Xk is contractible in Ne(p) C\Xh. For convenience,

let U=Ny(p), and Xl"={x eXk:xm=0} and Xkn={x eXk:xm=l}. Either

UnXk=0 or UC\Xk=0.\f Ur\Xkji0, then |/?m-0|<| because, for

some q e Xk,

\Pm - 0| ■ 2-m <• d(p, <z) = y < 2-(m+1).

Similarly, if U(~\Xkj^0, then \pm—1|<£. Hence Ucannot intersect both

XT and X?, for that would imply

|0 - 1| ^ |0 - pm\ + \pm - 1|< i + \ = 1,

a contradiction.

Consider the case U nXk = 0 ; the proof in case U r\Xk — 0 is entirely

analogous. For each qeU C\Xk, let q e Xk be such that qii)=qi¡) if «t^/w,

and qim)=0. Now consider the homotopy //: ((7 nAj.) x [0, l]-»-^/») C\Xk

defined by moving each point q along three line segments, first to q, then

to p, and finally to p. The mapping H is clearly continuous. Also the

distance to p of any point in the image of H is less than e, because

diq,q) = \qm-0\-2-m<\s, diq, p)^diq,p)<y<2-m<\s, and dip,p) =

|0— pm\ • 2~m<\e. Therefore the distance top of any point in the image of

His less than e. Finally, if q e U C\Xk then at least one of three alternatives

holds:

i\)qxe{ik+l)-\k^},
(2) qte{0, 1} for i=2, • ■ ■ ,m-l,m + l, • • • ,k + l, or

(3) qm=0.
One notes that each point of the line segment from q to q also satisfies

one of the three conditions and therefore belongs to Xk. Also qim) =

pim)=0, so that the line segment from q to p lies in Xk. Therefore, the

image of the homotopy is contained in Xk.

Given e>0, we have shown how to find m and y>0 such that y illus-

trates the uniformly equi-LC property for all Xk e <piQ) such that ac_w.
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But when 2^/<m, there is a number (5;>0 illustrating the uniform

equi-LC property for the particular /-cell Xt. Let <5 = min{y, <52, • • • , ôm_x};

then ô illustrates the property for the whole collection (j>(Q). The members

°f <rHô) which are not AT/s are points or Q itself. For points there is nothing

to prove; for Q, a linear homotopy (of diameter 2(5) will contract Nô(p)

to p. The lemma is established, and Theorem 3.1 shows that <f>iQ) is

uniformly equi-LAE.

5. The nonexistence of a selection for <f>. In this section we locate a

point p e Q such that there is no selection for <p restricted to any neigh-

borhood of p. Let/? be the point such that/?1 = 0 and pt = \ for ¿>1.

Suppose that U is a neighborhood of p and/: U-*Q is a selection for

f/>|i7. Without loss of generality, we may assume U is of the following

form: For some integer w^3 and positive e<2~m,

U = {x e Q:xx ^ mrx and \xt — \\ ^ s if i satisfies 2 5[ / ^ m}.

For each integer Ac^2, recall the definitions of Ek, Xk and Xj. from §2.

Notice that, for Ac=2, if q e U C\Xk then f(q) e Xk, so thatfiq\ e {(Ac + l)-\

Ac-1} orfiq)i e (0, 1} for some i satisfying 2^/^Ac-t-l. Also if q e UC\Xk

then fiq)=q. For each k^.m, define

Yk={xeEk:xi = pifor2^i^m}.

Let d Yk= Yk C\Xk, and note that Yk-dYk=Yk C\Xk. We see that x e d Yk

implies that xxe {(Ac + l)_1,Ac~1} or x¡ e {0, l}forsome/'=m + l, •• -, ac+1.

Also, x e Yk—dYk implies xx e ((Ac + l)-1, Ac-1) and x¡ e (0, 1) for j=m +

1, • • • , ac + 1. Therefore Yk is a closed (Ac—rM+2)-cell with (manifold)

interior and boundary Yk—dYk and dYk, respectively. Observe that

YfcÇ N for each Ac^w.

We claim that, for each Ac_»?, there existsyk e Yk—dYk such that, for

some / satisfying 2^i^m, f(yk)( e {0, 1}, and hence diyk,fiyk))>2-^m+1K

Suppose not; then let

r:{x e Xk:xi e (0, 1) for /' satisfying 2 ^ i g m} -*■ Yk

be the continuous function defined by r(x)t=pt if 2^i^m, and r(x)¡=Xj

if j=l or m<j-^k + l. The function r°f\Yk is then a retraction of the

(Ac—m+2)-ball Yk onto its boundary dYk: In fact, if ye Yk—dYk^Xk,

then/(j) e Xk; and if y e dYk^Xk, then f(y)=y. This is a contradiction.

For each Ac^m, let ykeYk-BYk such that d(yk,f(yk))^2^m+1).

Since U is compact, the sequence ym, ym+x, • • ■ has a subsequence which

converges to a point qeU. Since (y^.), e [(A + l)-1, Ac-1], we see that

qx=0, i.e., qeXa and f(q)=q. But d(yk,f(yk))^2~^+^ for all k&m,
so d(q,f(q))7±2-<-m+lK This contradiction completes the proof.
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6. Open problems. The problem of finding a useful selection theory

for carriers <f>:Xs-0'ç.2Y, where A" is infinite dimensional and the con-

ditions on </>, X, 0', and Fare "topological," remains unsolved. Selection

theory in which the dimension of X is arbitrary, and each <f>(x) satisfies

"convexity" conditions, is investigated in [5] and [8].

Because of similarities between E. Michael's Theorem 1.2 [6] and the

theory of finite-dimensional ANE's and because of our Theorem 1.1, it

is plausible that a condition which characterizes infinite-dimensional

ANE's is relevant to the solution of the infinite-dimensional selection

problem.

S. Lefschetz [4, pp. 84-87, (6.6)] showed that a compact metric space Y

is an ANE if and only if it satisfies the following condition:

Condition (L).    For every e>0, there exists (5>0 such that, if

(1) AT is any polyhedron,

(2) L is any subpolyhedron of K which contains all the vertices of K,

and

(3) f.L^-Y is a continuous function such that, diam(/(Lner))<<5

for each simplex o of K,

then there exists a continuous extension/:Ks-Y such that diam(/(cr))<£

for each simplex o of K.

We say a collection 0'<=,2Y is uniformly equi-(L) if each S e 0* satisfies

Condition (L), and if the choice of r5 depends on e but is independent of

S e 0'. Every uniformly equi-(L) collection 0* is uniformly equi-L^F,

but not conversely. The first is easily seen from Lefschetz [4, (6.6)] and

Dugundji [2, Theorem 3.1],7 and the second follows from the fact that

<p(Q) in the proof of Theorem 1.1 is not uniformly equi-(L).8

Another relevant condition may be the condition that <f> is continuous.

(I.e., if x0 e X and e>0, then x0 is interior to the set of points x in X

such that the Hausdorff distance between <f>(x) and (f>(x0) is less than e.

This definition of "continuous" is valid when each cf>(x) is compact.)

We do not know whether either or both of the above conditions,

together with the usual conditions of selection theory, will be enough to

guarantee a selection for </>.
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