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AN EXTENSION  OF A  THEOREM  OF EISENSTEIN

L.   KUIPERS

Abstract. In the present paper I obtain an extension of the

so-called Eisenstein theorem which is proved by means of Riemann-

Stieltjes integration.

Theorem.    Let n be a positive integer _2. Let pup2, ■ • • ,pn be odd

integers and relatively prime in pairs. Then
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Proof. The method of proof is Riemann-Stieltjes integration. Consider

the integrals
J'l/a

[Pix] [p2x] ■ ■ ■ [Pn-ix] d[pnx],
o
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<^~2 = [PnX] d[pYx\ [p2x] ■ ■ ■ [Pn-ïX].

First we observe that the greatest integer functions [pxx], [p2x], • • • ,

[pnx] have no discontinuities in common on the interval 0<x_^ in

view of the condition on the integers P\,p2, ■ ■ ■ ,pn- Second, the discon-

tinuities of [pix], i'=l, 2, •••,«, on the interval u<x^jf are at x=k\pt,

fe = l, 2, • • • , \(pi— 1), and the jump of [/vc] at each of these discon-

tinuities is equal to 1. Hence the value of 3~x is
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Consider the second integral. The discontinuities of [pxx\ [p2x] ■ • • [pn-ix]

are at x—k¡pt, fe = l, 2, • • • , |(/?¿—1), i=\, 2, • • ■ , n—1. Since there
are no common discontinuities and the jumps of [pfx] at the discon-

tinuities k\pi are equal to 1, the jump of \pxx\ [p2x] • • ■ [pn-xx] at each
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kjpi is equal to
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and so we obtain the value of the second integral

n—1 (».—1)/2       n

f~.
i=\      x=\    lc=\\lc*i Pi

This proves the theorem completely.

Remark. For the history of the so-called Eisenstein theorem («=2

in our Theorem) and other generalizations we refer to Bruce C. Berndt's

paper: A generalization of a theorem of Gauss on [x], presented at the

Third Illinois Conference on Number Theory on April 7, 1973.

As is well known the so-called Eisenstein theorem which says: Ifp andq

are two odd distinct primes then
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is very helpful in proving Gauss's quadratic reciprocity theorem.

Finally, thanks are due to the referee for pointing out to me a more

general statement than first submitted.
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