THE CONDITION $\operatorname{Ext}^i(M,R)=0$ FOR MODULES OVER LOCAL ARTIN ALGEBRAS (R,\mathfrak{M}) WITH $\mathfrak{M}^2=0$

MARGARET S. MENZIN

ABSTRACT. Let M be a finitely generated module over a (not necessarily commutative) local Artin algebra (R, \mathfrak{M}) with $\mathfrak{M}^2=0$. It is known that when R is Gorenstein (i.e. of finite injective dimension) $M=\Sigma R\oplus \Sigma R/\mathfrak{M}$. For R not Gorenstein we describe all M with $\operatorname{Ext}^1(M,R)=0$ and show that $\operatorname{Ext}^i(M,R)=0$ for some i>1 if and only if M is free. It follows that for R not Gorenstein all reflexives are free. We also calculate the lengths of all the $\operatorname{Ext}^i(M,R)$. As an application we show that if (R,\mathfrak{M}) is a commutative Cohen-Macaulay local ring of dimension d which is not Gorenstein, if R/\mathfrak{M}^2 is Artin and (x_1, \dots, x_d) is a system of parameters with \mathfrak{M}^2 contained in the ideal (x_1, \dots, x_d) and if M is a finitely generated R-module with $\operatorname{Ext}^i(M,R)=0$ for $1\leq i\leq 2d+2$, then M is free.

We call (R, \mathfrak{M}) a local Artin algebra if R/\mathfrak{M} is a division ring, where \mathfrak{M} is the Jacobson radical of R, if the center of R is an Artin ring, and if R if a finitely generated module over its center. We say R is Gorenstein if it is of finite injective dimension as an R-module. Throughout this paper all modules will be finitely generated.

Let (R, \mathfrak{M}) be a local Artin algebra. It is well known that every finitely generated left R-module M has a projective cover (i.e. an epimorphism $\varphi: P \to M$ minimal in the sense that $\operatorname{Ker} \varphi \subseteq \mathfrak{M} P$) which is unique up to isomorphism [3], and that M has no projective (free) direct summands if and only if $M^* = \operatorname{Hom}_R(M, R)$ is isomorphic to $\operatorname{Hom}_R(M, \mathfrak{M})$ [2]. Further, for each finitely generated left R-module M there is a minimal presentation—i.e. an exact sequence $F_1 \to F_0 \to M \to 0$ with $\varphi_0: F_0 \to M$ and $\varphi_1: F_1 \to \operatorname{Ker} \varphi_0$ projective covers, F_0 and F_1 free and finitely generated. We use this (unique) minimal presentation to define the parameters g_M and r_M .

DEFINITION. Let M be a finitely generated left module over a local Artin algebra (R, \mathfrak{M}) . Let

 $g_M = \ell(F_0/\mathfrak{M}F_0)$ the number of generators of M, $r_M = \ell(F_1/\mathfrak{M}F_1)$ the number of relations of M,

where $\ell(\)$ means the length as a left R-module.

Received by the editors July 6, 1972 and, in revised form, June 1, 1973. AMS (MOS) subject classifications (1970). Primary 16A46, 16A10, 16A64, 13H10; Secondary 16A62.

Key words and phrases. Artin local algebra, reflexive, Cohen-Macaulay, Gorenstein.

[©] American Mathematical Society 1974

We remark that if (R, \mathfrak{M}) is a local Artin algebra and M is a 2-sided R-module then the lengths of M as a left and as a right R-module coincide.

PROPOSITION 1. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$. Let $n=\ell(\mathfrak{M})\geq 1$ and let M be a finitely generated left R-module with no free direct summands. Then:

- (a) $\ell(M) = (n+1)g_M r_M$,
- (b) $\ell(M^*) = ng_M$,
- (c) $\ell(\operatorname{Ext}^1(M, R)) = nr_M g_M$,
- (d) $\ell(\text{Ext}^{i}(M, R)) = n^{i-2}r_{M}(n^{2}-1), i \ge 2.$

PROOF. We write g for g_M and r for r_M . Let $0 \to K \to R^g \to M \to 0$ be exact with $R^g \to M \to 0$ a projective cover. As $K \subseteq \mathfrak{M} R^g$, $\ell(M/\mathfrak{M} M) = g_M = g$. Also, as $\mathfrak{M}^2 = 0$, $\mathfrak{M} K = 0$ and K is a direct sum of copies of R/\mathfrak{M} . $0 \to \mathfrak{M} \to R \to R/\mathfrak{M} \to 0$ is the projective cover of R/\mathfrak{M} , and \mathfrak{M} is isomorphic to n copies of R/\mathfrak{M} (direct sum). Since $R^r \to K \to 0$ is a projective cover, $g_K = \ell(K) = r_M = r$, and by the same reasoning $r_K = \ell(\mathfrak{M} R^r) = nr$ ($= nr_M$).

(a) From $\ell(R) = \ell(\mathfrak{M}) + 1 = n + 1$, we have

$$\ell(M) = \ell(R^g) - \ell(K) = (n+1)g - r.$$

(b) As M is without free summands and $\mathfrak{M}^2=0$, $M^*\approx \operatorname{Hom}_R(M,\mathfrak{M})\approx \operatorname{Hom}_R(M/\mathfrak{M}M,\mathfrak{M})\approx \operatorname{Hom}_{R/\mathfrak{M}}(M/\mathfrak{M}M,\mathfrak{M})$.

As the lengths of R/\mathfrak{M} modules as R-modules and as R/\mathfrak{M} -modules coincide, this last has length $\ell(M/\mathfrak{M}M) \cdot \ell(\mathfrak{M}) = ng$.

(c) From the exact sequence $0 \rightarrow M^* \rightarrow (R^g)^* \rightarrow K^* \rightarrow \text{Ext}^1(M, R) \rightarrow 0$, we have

$$\ell(\text{Ext}^{1}(M, R)) = \ell(M^{*}) + \ell(K^{*}) - \ell(R^{g^{*}})$$

$$= ng_{M} + ng_{K} - (n+1)g_{M}$$

$$= ng_{K} - g_{M} = nr_{M} - g_{M} = nr - g.$$

(d) $\operatorname{Ext}^2(M, R) \approx \operatorname{Ext}^1(K, R)$ is of length $nr_K - g_K = n(nr) - r = r(n^2 - 1) = r_M(n^2 - 1)$. By induction on i, $\operatorname{Ext}^{i+1}(M, R) = \operatorname{Ext}^i(K, R)$ is of length $n^{i-2}r_K(n^2 - 1) = n^{i-1}r(n^2 - 1) = n^{i-1}r_M(n^2 - 1)$ for $i \ge 2$.

PROPOSITION 2. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$, and let M be a (finitely generated) left R-module. If $n=\ell(\mathfrak{M})\geq 2$ then the following are equivalent:

- (a) M is free.
- (b) $Ext^{1}(M, R) = Ext^{2}(M, R) = 0$.
- (c) Ext $^{i}(M, R) = 0$ for some $i \ge 2$.

PROOF. Trivially (a) \Rightarrow (b) \Rightarrow (c). If $M \neq$ (0) is a module without free summands, $n \geq 2$, and some Extⁱ(M, R)=0, then by the last formula in Proposition 1, $r_M=0$. Hence K=0 and M is free.

We obtain easily the well-known result:

COROLLARY 3. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$. Let $n=\ell(\mathfrak{M})$. Then R is Gorenstein if and only if n=0 or 1. If R is Gorenstein, then Injective dimension_R R=0 (i.e., R is injective) and all R-modules are of the form $\Sigma R \oplus \Sigma R/\mathfrak{M}$.

PROOF. When n=0, R is a division ring and the statement is true trivially. If R is Gorenstein, $\operatorname{Ext}^i(R/\mathfrak{M},R)=0$ for some $i\geq 1$ and also for some $i\geq 2$. Since $r_{R/\mathfrak{M}}=n$, from Proposition 1, we obtain $n^2-1=0$ and n=1. If n=1, $\operatorname{Ext}^2(M,R)=0$ for all finitely generated M by Proposition 1 and R is of finite injective dimension. In fact, since $r_{R/\mathfrak{M}}=n=1$ and $g_{R/\mathfrak{M}}=1$, we find $\operatorname{Ext}^1(R/\mathfrak{M},R)=0$ and hence

Injective dimension_R
$$R=0$$
.

If R is Gorenstein, and $M \neq R$ is indecomposable, then M is torsion-free (for example, by the sequence S() applied to R, below). So $M \subseteq P$ for some P projective and as M is without free summands $M \subseteq \mathfrak{M}P$ [2]. Since $\mathfrak{M}^2 = 0$, M is not faithful. Hence, \mathfrak{M} is the annihilator of M and $M = R/\mathfrak{M}$. R and R/\mathfrak{M} are the only indecomposable R-modules.

To investigate reflexive modules we introduce the map T. If R is a local Artin algebra and M is a finitely generated left R-module with minimal presentation

$$(1) F_1 \to F_0 \to M \to 0$$

 $(F_0, F_1 \text{ finitely generated and free})$, then we define $T(M) = \operatorname{Coker}(F_0^* \to F_1^*)$ so that

(2)
$$0 \to M^* \to F_0^* \to F_1^* \to T(M) \to 0$$

is exact. When M has no free (direct) summands and (1) is a minimal presentation of M, then (2) is a minimal presentation of T(M), and (since T(M) is without free summands) this presentation of T(M) produces $T^2(M)$ with $T^2(M) \approx M$. (To show (2) is a minimal presentation, write down the definitions of the maps. $\pi: F_1^* \to T(M)$ is minimal when M is without free summands so that $M^* = \operatorname{Hom}_R(M, \mathfrak{M})$, since $\varphi_0: F_0 \to M$ is minimal. $\varphi_1^*: F_0 \to \operatorname{Ker} \pi$ is minimal since $\varphi_1: F_1 \to \operatorname{Ker} \varphi_0$ is minimal.) Also, as minimal presentations of M_1 and M_2 induce a minimal presentation of $M_1 \oplus M_2$, $T(M_1 \oplus M_2) \approx T(M_1) \oplus T(M_2)$.

One of the most important facts about T is that if M is a left R-module then

$$S(\) \qquad 0 \to \operatorname{Ext}^{1}(T(M), \underline{\ }) \to \underline{\ } \otimes M \to \operatorname{Hom}(M^{*}, \underline{\ })$$
$$\to \operatorname{Ext}^{2}(T(M), \underline{\ }) \to 0$$

is an exact sequence of functors of right R-modules [1, Proposition 6.3], or [4, p. 43].

In particular, when we examine the sequence S(R) for the right R-module R, the second map is the canonical $M \rightarrow M^{**}$ and we see that M is reflexive $(M \approx M^{**})$ if and only if $\text{Ext}^1(T(M), R) = \text{Ext}^2(T(M), R) = 0$.

PROPOSITION 4. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$. If $n=\ell(\mathfrak{M})\geq 2$ then any reflexive module is free. If $n=\ell(\mathfrak{M})<2$ then every module is reflexive.

PROOF. We use the (unique) minimal presentation of M to define T(M). If $n=\ell(\mathfrak{M})<2$, R is Gorenstein, hence all $\operatorname{Ext}^1(T(M),R)=0=\operatorname{Ext}^2(T(M),R)$ and every M is reflexive. If $n\geq 2$, let M be a reflexive module without free summands. Then $\operatorname{Ext}^2(T(M),R)=0$ and by Proposition 2, T(M) is free. But then $0\rightarrow T(M)\rightarrow T(M)\rightarrow 0$ is the unique minimal presentation of T(M), so M=T(T(M))=0. Thus the only reflexives are free.

PROPOSITION 5. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$. Then the following conditions are equivalent:

- (a) $Ext^{1}(M, R) = 0$.
- (b) M is a direct sum $\Sigma R \oplus \Sigma T(R/\mathfrak{M})$.
- (c) If $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ and $0 \rightarrow A/\mathfrak{M}A \rightarrow B/\mathfrak{M}B \rightarrow M/\mathfrak{M}M \rightarrow 0$ are both exact, then the first sequence splits.
- (d) If $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ is exact and minimal presentations of A and M induce a minimal presentation of B, then the sequence splits.

PROOF. (c) and (d) are equivalent since the condition that minimal presentations of A and M induce a minimal presentation of B is exactly the condition that $g_A + g_M = g_B$. Let $n = \ell(\mathfrak{M})$. Now if $M = T(R/\mathfrak{M})$ then $r_M = g_{R/\mathfrak{M}} = 1$ and $g_M = r_{R/\mathfrak{M}} = n$, so $\ell(\operatorname{Ext}^1(M, R)) = nr_M - g_M = 0$. Hence (b) \Rightarrow (a).

To show (a) \Rightarrow (b), from the sequence before Proposition 4 we have the exact sequence $0\rightarrow \operatorname{Ext}^1(T^2(M),R)\rightarrow T(M)\rightarrow T(M)^{**}$. If $M=F\oplus M'$, M' without free summands, then $T^2(M)=T^2(M')=M'$. By our assumption $0=\operatorname{Ext}^1(T^2(M),R)=0$ and $0\rightarrow T(M)\rightarrow T(M)^{**}$ is exact—i.e. T(M) is torsionless. Thus $T(M)\subseteq F'$ for some free F'. As also T(M) is without projective summands, $T(M)\subseteq F'\mathfrak{M}$. As $\mathfrak{M}^2=0$, T(M) is a direct sum of copies of R/\mathfrak{M} and therefore $M'\approx T^2(M)=\Sigma T(R/\mathfrak{M})$.

To show (c) \Rightarrow (a) consider a sequence $0 \rightarrow R \rightarrow N \rightarrow M \rightarrow 0$. Now R is not contained in $\mathfrak{M}N$, else $\mathfrak{M} \subseteq \mathfrak{M}^2N=0$. As $\ell_R(R/\mathfrak{M})=1$, $R/\mathfrak{M} \subseteq N/\mathfrak{M}N$ and $0 \rightarrow R/\mathfrak{M}R \rightarrow N/\mathfrak{M}N \rightarrow M/\mathfrak{M}M \rightarrow 0$ is exact. By our assumption (c) the original sequence is split and $\operatorname{Ext}^1(M,R)=0$.

Finally we show (a) \Rightarrow (d). If minimal presentations of A and M induce a minimal presentation of B, then dualizing the presentations $G_X \rightarrow F_X \rightarrow X \rightarrow 0$, X=A, B, M, we obtain the commutative diagram

in which all rows are exact, and the second and third columns are split exact in such a way as to make boxes I and II commutative. By the snake lemma, the sequence $0 \rightarrow M^* \rightarrow B^* \rightarrow A^* \rightarrow T(M) \rightarrow T(B) \rightarrow T(A) \rightarrow 0$ is exact. But $\operatorname{Coker}(B^* \rightarrow A^*) = \operatorname{Ext}^1(M,R) = 0$ by assumption. Hence $0 \rightarrow T(M) \rightarrow T(B) \rightarrow T(A) \rightarrow 0$ is exact, the maps being induced from the G-column. The splitting maps on the G-column induce maps $T(A) \rightarrow T(B)$ and $T(B) \rightarrow T(M)$. It is easy to show that, as the F and G-columns both split, the induced maps on the T-column split it, and hence $T(B) \approx T(M) \oplus T(A)$. Hence $B \approx T^2(B) \approx T(T(M) \oplus T(A)) \approx T^2(M) \oplus T^2(A) \approx M \oplus A$ and the original sequence splits.

COROLLARY 6. Let (R, \mathfrak{M}) be a local Artin algebra with $\mathfrak{M}^2=0$. If $0\to A\to B\to M\to 0$ is exact, $\operatorname{Ext}^1(M,R)=0$, and B is finitely generated without free direct summands, then the sequence splits.

PROOF. We have $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ and $0 \rightarrow M^* \rightarrow B^* \rightarrow A^* \rightarrow 0$ exact. If M had free direct summands, so would B. Likewise if A^* had free direct summands so would A^* and hence B^* —contrary to B^* =Hom_R (B, \mathfrak{M}) (since B has no free summands). Thus the dual sequence gives $ng_B = \ell(B^*) = \ell(M^*) + \ell(A^*) = ng_M + ng_A$, since A, B, M are all without free summands. From the equivalence of (a) and (d) in Proposition 5 and Ext¹(M, R)=0 it follows that the original sequence splits.

As an application of the above, we may generalize Proposition 2 to Cohen-Macaulay rings.

PROPOSITION 7. Let (R, \mathfrak{M}) be a commutative Cohen-Macaulay local ring of dimension d which is not Gorenstein. Let M be a finitely generated

left R-module. If (x_1, \dots, x_d) is a system of parameters such that $\mathfrak{M}^2 \subseteq (x_1, \dots, x_d) = \sum Rx_i$ and R/\mathfrak{M}^2 is Artin, then $\operatorname{Ext}^i(M, R) = 0$ for $1 \le i \le 2d + 2$ implies that M is free.

PROOF. When d=0, $\mathfrak{M}^2=0$. Since R is not Gorenstein, $n=\ell(\mathfrak{M})\geq 2$ and the result is just Proposition 2. Assume the result for $0\leq d\leq k-1$, and we show it for d=k. Let $x=x_1$. We consider a projective cover of $M:0\to M_1\to F_0\to M\to 0$, and show by the inductive hypothesis that M_1/M_1x is a free R/Rx-module. From $0\to R\to R\to R/Rx\to 0$ exact, where the first map is multiplication by x, and the hypotheses on M, we conclude $\operatorname{Ext}_R^i(M_1,R/Rx)=0$, for $1\leq i\leq 2k$. As x,x_2,\cdots,x_d is a R-regular sequence, x is not a zero-divisor on F_0 , or its submodule M_1 . As x is M_1 -regular there are isomorphisms of R/Rx-modules [4, p. 1]:

(†)
$$\begin{array}{c} \operatorname{Ext}_R^i(M_1, \) \approx \operatorname{Ext}_{R/Rx}^i(M_1/M_1x, \), \\ \operatorname{Ext}_R^i(\ , R) \approx \operatorname{Ext}_{R/Rx}^{i-1}(\ , R/Rx) \ \text{ for } i \geq 1. \end{array}$$

Hence $\operatorname{Ext}^i_{R/Rx}(M_1/M_1x,R/Rx)=0$ for $1 \le i \le 2k$. Also, R/Rx is a local Cohen-Macaulay ring of dimension k-1 with x_2, \dots, x_d a system of parameters satisfying the hypotheses of the theorem. Applying the second isomorphism of (\dagger) to the R/Rx-module R/\mathfrak{M} , we see that R is Gorenstein (i.e. of finite injective dimension) if and only if R/Rx is. By the inductive hypotheses M_1/M_1x is R/Rx-free, and by the first isomorphism of (\dagger) $0=\operatorname{Ext}^1_R(M_1,R/\mathfrak{M})$. Thus M_1 is R-free and M is of projective dimension 1 or 0. But for any exact sequence $0\to K\to R^g\to N\to 0$ of R-modules, we have $\dots\to \operatorname{Ext}^1(M,R^g)\to \operatorname{Ext}^1(M,N)\to \operatorname{Ext}^2(M,K)=0$. From $0=\operatorname{Ext}^1(M,R)$, we have $\operatorname{Ext}^1(M,N)=0$ for all finitely generated N and M is free.

BIBLIOGRAPHY

- 1. M. Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, N.Y., 1966, 189-231. MR 35 #2945.
- 2. —, Comments on the functor Ext, Topology, 8 (1969), 151-166. MR 38 #5887.
- 3. H. Bass, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 28 #1212.
- 4. P. Samuel, ed., Anneaux de Gorenstein et torsion en algèbre commutative, Séminaire d'Algèbre Commutative, École Normale Supérieure de Jeune Filles, Secrétariat Mathématique, Paris, 1967. MR 37 #1435.

DEPARTMENT OF MATHEMATICS, SIMMONS COLLEGE, BOSTON, MASSACHUSETTS 02115