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ARTHUR  LUBIN

Abstract. Let {X, Bx) be a Blackwell space, where BK is the

tr-algebra of Borel sets. Then if a is a finite measure defined on a

countably generated sub-cr-algebra B<^BX, o can be extended to a

Borel measure t. Equivalently, if Xana yare Blackwell and/: X-*- Y

is Borel, and fi is a Borel measure carried onf(X)<^ Y, then there

exists a Borel measure t on A'with t'=o, where t'(£') = t(/^(E)).

We characterize {t|t/=ct} if/is semischlicht.

Let Bx denote the Borel sets of a topological space X. We consider

the following measure extension (or equivalently restriction) problem:

given a measure (we will always mean finite measure) a defined on a

oalgebra B<^BX, can a be extended to all of Bx, i.e., does there exist a

Borel measure t such that r(E) = a(E) for all E e Bl It is well known (see

[1, p. 71], for details) that if Bx and B2 are a-algebras, and B2 is generated

by Bx and finitely many additional sets, then any measure on Bx can be

extended to B2. The result is not known for countably generated exten-

sions. We show below (Theorem 5) that if X is a Blackwell space and B

is a countably generated sub-rz-algebra of Bx, then any measure on B

extends to Bx.

A Blackwell space is a measure space (X, Bx), where X is an analytic

subset of a complete separable metric space (c.s.m.). A subset A of a

c.s.m. is analytic iff A is the continuous image of a c.s.m. We note that

the analytic sets form a proper subset of Ux, the set of absolutely measur-

able subsets of X, where E e Ux iff E is /Z-measurable for all finite Borel

measures ¡u, where "fi" denotes the completion of fi, i.e., given p., there

exist Ex, E2eBx such that EX<=E<=E2 and p(E2—Ex)=0. A function g

is said to be absolutely measurable if g~\V) e Ux for all open V. Details

may be found in [3], [4], or [5]. We note that if X^S, X analytic, S a

c.s.m., then Bx = {EC\X\Ee Bs), so elements of Bx are topologically

analytic, and not necessarily Borel in S.

We begin by considering a special class of sub-a-algebras of Bx. Let

f-.X^-Ybe Borel measurable, and let Bf={f~1(E)\E e Bx). Given a Borel
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measure t on X, let rf be the Borel measure in Y defined by rf(E) =

r(f~l(E)). It follows from a well known isomorphism theorem (see [7,

p. 270]) that if t is a positive Borel measure on a c.s.m. X, and p is a

positive Borel measure on a c.s.m. Y with p(Y)=r(X) and t({jc})=0 for

all x £ X, then there exists a Borel function /: Ar—>• y with rf=p. The

following shows that a dual of this is equivalent to our extension problem.

Proposition 1. Let f: X—*- Y be Borel measurable. Then every measure

on Bf is the restriction of a Borel measure iff for every p, defined on BY with

fi(f(X)c)=0 (i.e., fi is carried on f(X)), there exists r on Bx with Tf=fi.

Proof. Assume that all Borel p carried on f(X) c Y are of the form

p=rf, and let a be a measure on Bf^Bx. Define p on BY by p(E) =

a(f~1(E)), E^Y. By assumption, there exists a Borel measure r with

T,=fi. Thus, T(f~l(E))=fi(E) = a(f~1(E)), so t extends a.

Conversely, suppose the extension property holds. Then given a Borel

measure p carried onf(X) c Y, define a on B¡ by a(f~1(E))=/n(E). (Note

a is well-defined since p is carried on f(X).) By assumption, a is the

restriction of some t defined on Bx, and clearly ¥=p.

The proof of our main result relies on the following "selection" theorem

of von Neumann.

Theorem 2 [6]. Let A be an analytic subset of a c.s.m. S, and let F be a

continuous real-valued function on A. Then there exists an absolutely

measurable G:F(A)^>-A such that F° G is the identity on F(A).

Corollary 3. If X and Y are Blackwell and F: X—>- Y is Borel, there

exists an absolutely measurable G: Y—*-X such that F o G is the identity

on F(X).

Proof. Since Y is Blackwell, we may assume Y^R, the real line.

Let (FxI):(Xx Y)^(Yx Y) be defined by (FxI)((x,y)) = (F(x),y), and

let Pj be projection on the/h coordinate,y'=l, 2. Then

A = {(x, Fix)) \xeX} = (Fx ^({(y^)})

is Borel in Jx Y, and is thus an analytic subset of a c.s.m. Since P2:A—>-Y

is continuous, there exists an absolutely measurable g:P2(A)—>-A with

P2° g the identity on P2(A)=F(X). Then G=PX ° g satisfies the theorem.

Remark 4. (i) lff:X-*-Yis Borel and BY is countably generated, then

Bf is countably generated.

(ii) If X is Blackwell and B^BX is countably generated, then there

exists a Borel /: X->R with B=Bf. (This was pointed out to me by the

referee.)

Proof,    (i) follows immediately.
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Suppose {£„} generates the cr-algebra B. Consider f(x) = ^n 3~n%E ix).

Then since B and Bf clearly have the same atoms and X is Blackwell, it

follows that B=3f (see [5, p. 38]).

Theorem 5. Let X be Blackwell and let a be a finite measure on a

countably generated sub-a-algebra B. Then a has an extension r to the full

a-algebra Bx.

We first prove the following

Lemma. Iff:X—>-Y is absolutely measurable and S<= Y is absolutely

measurable, then f"1(S)<^X is absolutely measurable. In particular, a

composition of absolutely measurable functions is absolutely measurable.

Proof. Given any p on Bx, consider v=(fi)f defined on BY- Since S

is absolutely measurable, there exist Sx, S2eBY with SX^S<^S2,

v(S2-Sx)=0. Let T—f-^Si). Then Tx c/-i(S) c T2, Tx, T2 are absolutely

measurable, and fi(T2-Tx)=fi(f~1(S2-Sx))=v(S2-Sx)=0. Thus, f~l(S)
is /«-measurable.

Proof of Theorem 5. Given a on B, we have B=Bf where f.X-^-R is

Borel. Then there exists an absolutely measurable g:f(X)= Y-+X with

f°g=iY. Define t on Bx by r(S) = a((g of)~1(S)). (This makes sense,

since g o/is absolutely measurable.) Clearly, if S e Bs, there exists le Y

such that S=f-\T) and TeBY.
Then

t(S) = 5((g0fY\S)) = a(f-i(g-\S)))

= a(f-\(fog)-i(T))) = 5(f-\T))
= 5(S) = a(S).

Thus, t extends a to Bx.

Corollary 6. Let f: X-> Y be Borel, where X and Y are Blackwell, and

let p be a Borel measure carried on f(X) c Y. Then there exists r on Bx

with Tf=p.

The proof of the corollary is explicit in the proof of the theorem. We

note that the t obtained is of the form r(E)=p(g~1(E))=p(f(Er\S)),

where S=g( Y). S thus consists of one point "selected" from each pre-

image set/-1({j>}). Hence, t is carried on a 1-1 set, i.e., a section, off.

If/is 1-1, then t is clearly unique. Suppose that / is semischlicht,

i.e., that f~~l({y}) is a countable set for all y e Y. Then there is a countable

collection of disjoint Borel sets {Sn} such that (J Sn=X,f„=f\Sn is 1-1,

and f(Sn)=f(X-\Jj<nSj)- (See [2, p. 335].) Given a Borel measure a

on T, let t„ be defined on Bx by Tn(E) = a(f(EnSn)). Then T^ = cr|/;i(A.).
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Choose an e Lx(tJ such that 2« o„ifZl(y))=i a.e. [a], where

Cnifn'iy)) = 0     if J $fn(Sn),

and the series is absolutely convergent. Let t be defined on Bx by

T(G)=2n f a„ix) dr„ix), i.e., dr(x) = 2„an(x) drn(x) so t is a "convex

combination" of the measures rn. Then it is easy to see that ¥=a, and

we see below that this characterizes {r\rf=a}.

Proposition 7. Let X and Y be Blackwell, and let f: X-^>- Y be a semi-

schlicht Borel map. Let a be a measure defined on BY, and suppose that

{Sn}, {/„} and (tJ are as above. Then there exists {an(x)} such that an e

¿¿CO, Inan(fñ1(y))=l a.e. [a], anddT(x) = ^nan(x) drn(x).

Proof. Using the Hahn decomposition, we may assume that a and

t are positive. Then for EcSn<^X,

r(E) = r(f-\fn(E))) = r(r\fn(E))) = a(fn(E)) = rn(E),

so by the Radon-Nikodym theorem, there exists a„ e L1^«) with

r(£) = f an(x) drn(x) = f      an(f~\y)) da(y)    if £ c Sn.
Je JfjE)

Thus, formel-,

r(E) = 2 «E n Sn) = f 2 a»(x) drn(x),
n Je

so

¿M*) = 2 fl"W drn(x).

For£<=y,

a(E) = r(f-\E)) = 2  Í      , «.(/?(») d«*O0

=¿(2 ««(/ñ1^))) <My).

Hence,

2 «n(/;1W) = 1 a.e. [a].
n

We point out that if, in fact, r(E)=a(f(Er\S)) for E^X, where

/|s is 1-1, then for each n, there exists Dn^Sn such that an=%D and

5 = U„ L)n. Further, the following example shows that the assumption/

semischlicht cannot be dropped.

For a e [0, 1] an irrational number, consider the unique decimal

representation a=0.axa2 ••• , and let /: [0, 1]—>-[0, 1] be defined by

f(0.axa2a3 • • ■) = 0.axa3a5 ■ • ■ . Then, after defining / in an appropriate

manner on the rational points, which we can ignore since we will be using
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nonatomic measures,/maps [0, 1] onto [0, 1], and

/^(O.íZjúfa ■ • •) = {0.axxxa2x2 ■ ■ ■ | xt arbitrary}.

Let <D:[0, l]->([0, l]x [0, 1]) be defined by

<$>(0.axa2a3 • • •) = (0.axa3a5 ■ ■ • , 0.a2ß4a6 ■ • •)•

Let m be Lebesgue measure in [0, 1]. Let a be a singular nonatomic

measure on [0, 1]. We now define r on [0, 1] by T(E)=(axm)(Q>(E)).

We note that $(£) is measurable since O restricted to the irrationals is a

homeomorphism.

Suppose E=f^(B) for some Borel set £c [0, 1]. Then

E = {0.axxxa2x2 ■•■{ 0.axa2 ■ ■ ■ e B}    and    <D(£) = B x [0, 1].

Thus,

r(£) = r(/-i(/0) = {o X m)(0)(£))

= (a X m)(B X [0, 1]) = a(B).

Hence, rf=a, and it is easy to see that if/|s is 1-1, then t(S)=0, so t

cannot be written as a "combination" of measures supported on 1-1 sets

off
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