EXTENSIONS OF MEASURES AND THE VON NEUMANN SELECTION THEOREM¹

ARTHUR LUBIN

ABSTRACT. Let (X, B_X) be a Blackwell space, where B_X is the σ -algebra of Borel sets. Then if σ is a finite measure defined on a countably generated sub- σ -algebra $B \subset B_X$, σ can be extended to a Borel measure τ . Equivalently, if X and Y are Blackwell and $f: X \to Y$ is Borel, and μ is a Borel measure carried on $f(X) \subset Y$, then there exists a Borel measure τ on X with $\tau' = \sigma$, where $\tau'(E) = \tau(f^{-1}(E))$. We characterize $\{\tau \mid \tau' = \sigma\}$ if f is semischlicht.

Let B_X denote the Borel sets of a topological space X. We consider the following measure extension (or equivalently restriction) problem: given a measure (we will always mean finite measure) σ defined on a σ -algebra $B \subset B_X$, can σ be extended to all of B_X , i.e., does there exist a Borel measure τ such that $\tau(E) = \sigma(E)$ for all $E \in B$? It is well known (see [1, p. 71], for details) that if B_1 and B_2 are σ -algebras, and B_2 is generated by B_1 and finitely many additional sets, then any measure on B_1 can be extended to B_2 . The result is not known for countably generated extensions. We show below (Theorem 5) that if X is a Blackwell space and B is a countably generated sub- σ -algebra of B_X , then any measure on B extends to B_X .

A Blackwell space is a measure space (X, B_X) , where X is an analytic subset of a complete separable metric space (c.s.m.). A subset A of a c.s.m. is analytic iff A is the continuous image of a c.s.m. We note that the analytic sets form a proper subset of U_X , the set of absolutely measurable subsets of X, where $E \in U_X$ iff E is $\bar{\mu}$ -measurable for all finite Borel measures μ , where " $\bar{\mu}$ " denotes the completion of μ , i.e., given μ , there exist E_1 , $E_2 \in B_X$ such that $E_1 \subseteq E \subseteq E_2$ and $\mu(E_2 - E_1) = 0$. A function g is said to be absolutely measurable if $g^{-1}(V) \in U_X$ for all open V. Details may be found in [3], [4], or [5]. We note that if $X \subseteq S$, X analytic, X a c.s.m., then $X = \{E \cap X \mid E \in B_S\}$, so elements of X are topologically analytic, and not necessarily Borel in X.

We begin by considering a special class of sub- σ -algebras of B_X . Let $f: X \to Y$ be Borel measurable, and let $B_f = \{f^{-1}(E) | E \in B_X\}$. Given a Borel

Presented to the Society, April 20, 1973; received by the editors January 30, 1973 and, in revised form, June 4, 1973.

AMS (MOS) subject classifications (1970). Primary 28A05, 28A60, 28-00.

¹ Partially supported by NSF GP-38265.

[©] American Mathematical Society 1974

measure τ on X, let τ^f be the Borel measure in Y defined by $\tau^f(E) = \tau(f^{-1}(E))$. It follows from a well known isomorphism theorem (see [7, p. 270]) that if τ is a positive Borel measure on a c.s.m. X, and μ is a positive Borel measure on a c.s.m. Y with $\mu(Y) = \tau(X)$ and $\tau(\{x\}) = 0$ for all $x \in X$, then there exists a Borel function $f: X \to Y$ with $\tau^f = \mu$. The following shows that a dual of this is equivalent to our extension problem.

PROPOSITION 1. Let $f: X \to Y$ be Borel measurable. Then every measure on B_f is the restriction of a Borel measure iff for every μ defined on B_Y with $\bar{\mu}(f(X)^c)=0$ (i.e., μ is carried on f(X)), there exists τ on B_X with $\tau^f=\mu$.

PROOF. Assume that all Borel μ carried on $f(X) \subset Y$ are of the form $\mu = \tau^f$, and let σ be a measure on $B_f \subset B_X$. Define μ on B_Y by $\mu(E) = \sigma(f^{-1}(E))$, $E \subset Y$. By assumption, there exists a Borel measure τ with $\tau^f = \mu$. Thus, $\tau(f^{-1}(E)) = \mu(E) = \sigma(f^{-1}(E))$, so τ extends σ .

Conversely, suppose the extension property holds. Then given a Borel measure μ carried on $f(X) \subset Y$, define σ on B_f by $\sigma(f^{-1}(E)) = \mu(E)$. (Note σ is well-defined since μ is carried on f(X).) By assumption, σ is the restriction of some τ defined on B_X , and clearly $\tau^f = \mu$.

The proof of our main result relies on the following "selection" theorem of von Neumann.

THEOREM 2 [6]. Let A be an analytic subset of a c.s.m. S, and let F be a continuous real-valued function on A. Then there exists an absolutely measurable $G: F(A) \rightarrow A$ such that $F \circ G$ is the identity on F(A).

COROLLARY 3. If X and Y are Blackwell and $F: X \rightarrow Y$ is Borel, there exists an absolutely measurable $G: Y \rightarrow X$ such that $F \circ G$ is the identity on F(X).

PROOF. Since Y is Blackwell, we may assume $Y \subseteq \mathbb{R}$, the real line. Let $(F \times I): (X \times Y) \rightarrow (Y \times Y)$ be defined by $(F \times I)((x, y)) = (F(x), y)$, and let P_i be projection on the jth coordinate, j=1, 2. Then

$$A = \{(x, F(x)) \mid x \in X\} = (F \times I)^{-1}(\{(y, y)\})$$

is Borel in $X \times Y$, and is thus an analytic subset of a c.s.m. Since $P_2: A \to Y$ is continuous, there exists an absolutely measurable $g: P_2(A) \to A$ with $P_2 \circ g$ the identity on $P_2(A) = F(X)$. Then $G = P_1 \circ g$ satisfies the theorem.

REMARK 4. (i) If $f: X \to Y$ is Borel and B_Y is countably generated, then B_f is countably generated.

(ii) If X is Blackwell and $B \subseteq B_X$ is countably generated, then there exists a Borel $f: X \to \mathbb{R}$ with $B = B_f$. (This was pointed out to me by the referee.)

PROOF. (i) follows immediately.

Suppose $\{E_n\}$ generates the σ -algebra B. Consider $f(x) = \sum_n 3^{-n} \chi_{E_n(x)}$. Then since B and B_f clearly have the same atoms and X is Blackwell, it follows that $B = B_f$ (see [5, p. 38]).

Theorem 5. Let X be Blackwell and let σ be a finite measure on a countably generated sub- σ -algebra B. Then σ has an extension τ to the full σ -algebra B_X .

We first prove the following

LEMMA. If $f: X \rightarrow Y$ is absolutely measurable and $S \subset Y$ is absolutely measurable, then $f^{-1}(S) \subset X$ is absolutely measurable. In particular, a composition of absolutely measurable functions is absolutely measurable.

PROOF. Given any μ on B_X , consider $\nu=(\bar{\mu})^f$ defined on B_Y . Since S is absolutely measurable, there exist S_1 , $S_2\in B_Y$ with $S_1\subseteq S\subseteq S_2$, $\nu(S_2-S_1)=0$. Let $T_i=f^{-1}(S_i)$. Then $T_1\subseteq f^{-1}(S)\subseteq T_2$, T_1 , T_2 are absolutely measurable, and $\bar{\mu}(T_2-T_1)=\bar{\mu}(f^{-1}(S_2-S_1))=\nu(S_2-S_1)=0$. Thus, $f^{-1}(S)$ is $\bar{\mu}$ -measurable.

PROOF OF THEOREM 5. Given σ on B, we have $B=B_f$ where $f:X\to R$ is Borel. Then there exists an absolutely measurable $g:f(X)=Y\to X$ with $f\circ g=i_Y$. Define τ on B_X by $\tau(S)=\bar{\sigma}((g\circ f)^{-1}(S))$. (This makes sense, since $g\circ f$ is absolutely measurable.) Clearly, if $S\in B_f$, there exists $T\subset Y$ such that $S=f^{-1}(T)$ and $T\in B_Y$.

Then

$$\tau(S) = \bar{\sigma}((g \circ f)^{-1}(S)) = \bar{\sigma}(f^{-1}(g^{-1}(S)))$$

= $\bar{\sigma}(f^{-1}((f \circ g)^{-1}(T))) = \bar{\sigma}(f^{-1}(T))$
= $\bar{\sigma}(S) = \sigma(S)$.

Thus, τ extends σ to B_X .

COROLLARY 6. Let $f: X \rightarrow Y$ be Borel, where X and Y are Blackwell, and let μ be a Borel measure carried on $f(X) \subseteq Y$. Then there exists τ on B_X with $\tau^f = \mu$.

The proof of the corollary is explicit in the proof of the theorem. We note that the τ obtained is of the form $\tau(E) = \mu(g^{-1}(E)) = \mu(f(E \cap S))$, where S = g(Y). S thus consists of one point "selected" from each preimage set $f^{-1}(\{y\})$. Hence, τ is carried on a 1-1 set, i.e., a section, of f.

If f is 1-1, then τ is clearly unique. Suppose that f is semischlicht, i.e., that $f^{-1}(\{y\})$ is a countable set for all $y \in Y$. Then there is a countable collection of disjoint Borel sets $\{S_n\}$ such that $\bigcup S_n = X$, $f_n = f|_{S_n}$ is 1-1, and $f(S_n) = f(X - \bigcup_{j < n} S_j)$. (See [2, p. 335].) Given a Borel measure σ on Y, let τ_n be defined on B_X by $\tau_n(E) = \sigma(f(E \cap S_n))$. Then $\tau_n^{f_n} = \sigma|_{f_n(X)}$.

Choose $a_n \in L^1(\tau_n)$ such that $\sum_n a_n(f_n^{-1}(y)) = 1$ a.e. $[\sigma]$, where

$$a_n(f_n^{-1}(y)) = 0$$
 if $y \notin f_n(S_n)$,

and the series is absolutely convergent. Let τ be defined on B_X by $\tau(E) = \sum_n \int a_n(x) d\tau_n(x)$, i.e., $d\tau(x) = \sum_n a_n(x) d\tau_n(x)$ so τ is a "convex combination" of the measures τ_n . Then it is easy to see that $\tau^f = \sigma$, and we see below that this characterizes $\{\tau | \tau^f = \sigma\}$.

PROPOSITION 7. Let X and Y be Blackwell, and let $f: X \rightarrow Y$ be a semi-schlicht Borel map. Let σ be a measure defined on B_Y , and suppose that $\{S_n\}$, $\{f_n\}$ and $\{\tau_n\}$ are as above. Then there exists $\{a_n(x)\}$ such that $a_n \in L^1(\tau_n)$, $\sum_n a_n(f_n^{-1}(y)) = 1$ a.e. $[\sigma]$, and $d\tau(x) = \sum_n a_n(x) d\tau_n(x)$.

PROOF. Using the Hahn decomposition, we may assume that σ and τ are positive. Then for $E \subseteq S_n \subseteq X$,

$$\tau(E) = \tau(f_n^{-1}(f_n(E))) \le \tau(f^{-1}(f_n(E))) = \sigma(f_n(E)) = \tau_n(E),$$

so by the Radon-Nikodym theorem, there exists $a_n \in L^1(\tau_n)$ with

$$\tau(E) = \int_E a_n(x) d\tau_n(x) = \int_{f_n(E)} a_n(f_n^{-1}(y)) d\sigma(y) \quad \text{if } E \subseteq S_n.$$

Thus, for $E \subseteq X$,

$$\tau(E) = \sum_{n} \tau(E \cap S_n) = \int_{E} \sum_{n} a_n(x) d\tau_n(x),$$

so

$$d\tau(x) = \sum_{n} a_n(x) d\tau_n(x).$$

For $E \subseteq Y$,

$$\sigma(E) = \tau(f^{-1}(E)) = \sum_{f_n(f^{-1}(E) \cap S_n)} a_n(f_n^{-1}(y)) \, d\sigma(y)$$
$$= \int_E \left(\sum_n a_n(f_n^{-1}(y))\right) \, d\sigma(y).$$

Hence,

$$\sum_{n} a_{n}(f_{n}^{-1}(y)) = 1 \text{ a.e. } [\sigma].$$

We point out that if, in fact, $\tau(E) = \sigma(f(E \cap S))$ for $E \subset X$, where $f|_S$ is 1-1, then for each n, there exists $D_n \subset S_n$ such that $a_n = \chi_{D_n}$ and $S = \bigcup_n D_n$. Further, the following example shows that the assumption f semischlicht cannot be dropped.

For $a \in [0, 1]$ an irrational number, consider the unique decimal representation $a=0.a_1a_2\cdots$, and let $f:[0, 1] \rightarrow [0, 1]$ be defined by $f(0.a_1a_2a_3\cdots)=0.a_1a_3a_5\cdots$. Then, after defining f in an appropriate manner on the rational points, which we can ignore since we will be using

nonatomic measures, f maps [0, 1] onto [0, 1], and

$$f^{-1}(0.a_1a_2\cdots) = \{0.a_1x_1a_2x_2\cdots \mid x_i \text{ arbitrary}\}.$$

Let $\Phi: [0, 1] \rightarrow ([0, 1] \times [0, 1])$ be defined by

$$\Phi(0.a_1a_2a_3\cdots)=(0.a_1a_3a_5\cdots,0.a_2a_4a_6\cdots).$$

Let m be Lebesgue measure in [0, 1]. Let σ be a singular nonatomic measure on [0, 1]. We now define τ on [0, 1] by $\tau(E) = (\sigma \times m)(\Phi(E))$. We note that $\Phi(E)$ is measurable since Φ restricted to the irrationals is a homeomorphism.

Suppose $E=f^{-1}(B)$ for some Borel set $B \subseteq [0, 1]$. Then

$$E = \{0.a_1x_1a_2x_2 \cdots \mid 0.a_1a_2 \cdots \in B\}$$
 and $\Phi(E) = B \times [0, 1]$.

Thus,

$$\tau(E) = \tau(f^{-1}(B)) = (\sigma \times m)(\Phi(E))$$
$$= (\sigma \times m)(B \times [0, 1]) = \sigma(B).$$

Hence, $\tau^f = \sigma$, and it is easy to see that if $f|_S$ is 1-1, then $\tau(S) = 0$, so τ cannot be written as a "combination" of measures supported on 1-1 sets of f.

ACKNOWLEDGMENT. The author is grateful to Professors P. R. Halmos, Edward Fisher, and William Moran for pointing out a reference to von Neumann's paper and thus simplifying an earlier version of this paper; and also to the referee for pointing out the notion of Blackwell spaces, and other helpful comments.

BIBLIOGRAPHY

- 1. P. R. Halmos, *Measure theory*, Van Nostrand, Princeton, N.J., 1950. MR 11, 504.
 - 2. F. Hausdorff, Set theory, 2nd ed., Chelsea, New York, 1962. MR 25 #4999.
- 3. K. Kuratowski, *Topologie*. Vol. I, 2nd ed., Monografie Mat., Tom 20, Warszawa-Wrocław, 1948; English transl., New ed., rev. and aug., Academic Press, New York; PWN, Warsaw, 1966. MR 10, 389; 36 #840.
 - 4. N. Lusin, Leçons sur les ensembles analytiques, Hermann, Paris, 1930.
- 5. Paul A. Meyer, *Probability and potentials*, Blaisdell, Waltham, Mass., 1966. MR 34 #5119.
- 6. J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401-485. MR 10, 548.
- 7. H. L. Royden, *Real analysis*, Macmillan, New York; Collier-Macmillan, London, 1963. MR 27 #1540.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Current address: Department of Mathematics, Northwestern University, Evanston, Illinois 60201