HARMONIC NULL SETS AND THE PAINLEVÉ THEOREM

J. L. SCHIFF

ABSTRACT. A less restrictive condition on an open Riemann surface than has been formerly known for a subset of the ideal boundary of a resolutive compactification to have harmonic measure zero is demonstrated. Then a generalized version of a classical theorem of Painlevé is established in this framework.

Recently, Arsove and Leutwiler [2] proved a generalization of the classical theorem of Painlevé which states that an analytic function on a Jordan region which tends to zero at each point of a nondegenerate boundary are vanishes identically. Their result stemmed from an important new characterization of harmonic null sets. It is well known [1] that the existence of a positive harmonic function on a bounded region which tends to ∞ on a boundary set E is necessary and sufficient for E to have harmonic measure zero. In [2], the requirement of positiveness is disposed of.

A similar situation has existed in the field of potential theory on Riemann surfaces. The existence of a *positive* superharmonic function on R whose lim inf tends to ∞ at each point of a subset of a suitable ideal boundary, has long been accepted as a sufficient condition for the subset to have harmonic measure zero. However, it can be demonstrated that here also *positiveness is not required*, and Painlevé's theorem can be extended to Riemann surfaces as well.

THEOREM. Let R^* be a resolutive compactification of an open Riemann surface R, and $\Delta = R^* - R$. If a superharmonic function s on R tends to ∞ at all points of $E \subseteq \Delta$, then the harmonic measure ω of E is zero.

PROOF. Let $G = \{z \in R | s(z) > 0\}$. Then G is open in R, and set

$$A = \left\{ \zeta \in \Delta - \operatorname{cl}(R - G) \,\middle|\, \liminf_{z \to \zeta} s(z) = \infty \right\}.$$

Received by the editors July 31, 1973.

AMS (MOS) subject classifications (1970). Primary 31A20; Secondary 30A50.

J. L. SCHIFF

By Hilfssatz 8.8 of [3], $\omega(A)=0$. For any $\zeta \in E$, if $\zeta \notin A$, then we must have $\zeta \in \operatorname{cl}(R-G)$ since $\lim_{z\to\zeta} s(z)=\infty$. Hence there exists a net $\{z_{\alpha}\}\subset R-G$ such that $z_{\alpha}\to\zeta$. But $\zeta\in E$ implies that $s(z_{\alpha})\to\infty$, which contradicts the fact that $s(z_{\alpha})\leq 0$. It follows that $E\subseteq A$ and $\omega(E)=0$ as desired.

The theorem is also valid in the theory of harmonic spaces.

Painlevé's classical result can now be generalized to the following:

COROLLARY. Let f be analytic on R, $f \rightarrow 0$ at all points of $E \subseteq \Delta$, where $\omega(E) > 0$. Then $f \equiv 0$.

PROOF. If $f \not\equiv 0$, let $u = -\log|f|$. Then u is superharmonic on R, and $u \rightarrow \infty$ at all points of E. Thus $\omega(E) = 0$, a contradiction.

BIBLIOGRAPHY

- 1. M. Arsove, The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184-194. MR 36 #4009.
- 2. M. Arsove and H. Leutwiler, Painlevé's theorem and the Phragmén-Lindelöf maximum principle, Math. Z. 122 (1971), 227-236.
- 3. C. Constantinescu and A. Cornea, *Ideale Ränder Riemannscher Flächen*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 32, Springer-Verlag, Berlin, 1963, 244 pp. MR 28 #3151.
- 4. P. Painlevé, Sur les lignes singulières des fonctions analytiques, Ann. de Toulouse 2 (1888), 1-130.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND