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A MAXIMUM PRINCIPLE FOR «-METAHARMONIC
FUNCTIONS

SHUI-NEE CHOW1 AND  D.  R.  DUNNINGER

Abstract. A class of n-metaharmonic functions is shown to

satisfy the inequality, \u(x)\ ^k\u(x0)\, where x is an arbitrary point

in a domain D, x0 is some fixed point on the boundary of D, and

A: is a constant.

1.    Consider a differential equation of the form

(1) Lu = Anw + a^jA"-^ + • • • + a0u = 0

where a0, ■ ■ ■ , an_x are real constants, A is the Laplace operator in

Euclidean space of p dimensions Ep and Am = A(A™~1), A° = /. Points in

Ep are denoted by x=(xx, • • • , xP). Let D be a bounded domain in Ep

with a sufficiently smooth boundary dD. A function u of class C(D)r\

C2n(D) and satisfying (1) in D is called an n-metaharmonic function or

regular solution [1]. Associated with (1) is the following characteristic

equation

(2) f(X) = Xn + a^A"-1 + • • • + a0 = 0.

The main purpose of this paper is to prove the following maximum

principle.

Theorem 1.    Suppose the roots Xt of (2) satisfy both of the conditions:

(a) ReAi=0.

(b) If Re A¿=0, then A¿ is a simple root.

If u is a regular solution of (I) satisfying

(3) Am = A2« = • • • = A"-1* = 0   on dD

then there exists a positive constant k and a point x0 e dD such that

(4) \u(x)\ < k \u(x0)\   for all xeD.
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Proof.    Let « be a regular solution of (1). Then the « functions

ux=u, z/2 = Ak, ■ ■ • , Mn = A"_1zz satisfy the vector equation

(5) A<7= -AU

where
'0-1       0   •••       0 >

0        0-1    •••       0
«<3

U = A =

\U*J

-1

J

0        0

Uo       ax      a2  • • •   an_x

Note that —A is the companion matrix of the polynomial f(X) and

consequently the eigenvalues fit of A are given by ¡xi=—Xi and satisfy

both of the conditions:

(a') Reft=0.
(b') If Re ^1=0, then fi{ is simple.

According  to  a well-known  result in  Liapunov  stability  theory   [2,

Theorem 4*, p. 183] there exists a positive definite matrix B and a positive

semidefinite matrix C satisfying

(6) ATB + BA= -C

where "F" denotes the transpose. Defining

(7) V = UTBU

and applying the Laplacian to (7) gives

(8) AF = (AU)TBU + UTB(AU) + 2^ (Ux)TBUXi.

Substituting  (5) into (8), using  (6), and recalling that B is positive

definite and C is positive semidefinite, we find that

AF ^ -UT(ATB + BA)U = UTCU ^ 0.

According to the maximum principle for subharmonic functions, there

exists a point x0 e dD such that

(9) V(xa) ^ V(x)

for all x e D. Since B is positive definite it follows that the diagonal

elements bH of B are positive and moreover that there exists a positive

constant K (in fact the lowest eigenvalue of B) such that UTBU^.KUTU.
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In view of these remarks and the fact that u satisfies the boundary con-

ditions (3), the inequality in (9) becomes

bxxu2(x0) > KUTU = Ku\x)

and consequently, |m(jc)|^Ar|t/(jc0)| for all x e D, where k=(bxxIKy'2.

Remarks.

1. If instead of (3) we prescribe the boundary conditions

u = Am = • • • = A*-1« = Ai+1u = • • • = A""1« = 0

where i is a given integer such that 0<z':_«— 1, then it can be shown,

similarly, that there exist an x0 e dD and a positive constant ki such that

lA^OcOl^rcJA'zzOco)! for all x e D.
2. As a consequence of the inequality (4), the usual type of uniqueness

and continuous dependence theorems follow. However, we shall not

pursue this point here.

2. Examples.

1. For n=2, consider

A2« + ax Aw + a0u = 0   in D,

Aw = 0   on dD.

The associated characteristic equation X2+axX+a0=0 has roots

h = (-«i + («i - 4j0)1/2)/2,       X2 = (-ax - (a\ - 4a0)1/2)/2.

Hence, the inequality (4) is valid provided one of the following conditions

is satisfied :

(i) a\ - 4a0 < 0,       ax < 0,

(ii) a\ — 4a0 > 0,       ax < 0,       a0 > 0,

(iii) ax = 0,       a0 > 0.

We note that this result was obtained in [3] under condition (iii).

The inequality (4) is easily shown to be false, in general, if ax>0. In

fact, if we let D denote the region 0<;c<7r, 0<j<7r, then the problem

A2w + 4 Am + 4m = 0   in D,

m = Am = 0    on dD,

has as a solution M=sin x sin y, for which (4) does not hold.

2. For arbitrary «, consider

(A - a)nu = 0   in D,

Am = A2m = • ■ • = A"-1« = 0   on dD.
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The associated characteristic equation has only one distinct root, namely

X=a. Hence if a>0 then inequality (4) is valid. Moreover, the counter-

example used in Example 1 shows that inequality (4) is false if a<0.

3. Consider the following equation

(11) A"m + a0u = 0   in D.

Since the «th roots of 1 or — 1, for «^3, do not satisfy either of the con-

ditions (a) or (b) in Theorem 1, it appears that the inequality (4) is not

valid for solutions of (11). However, this is still an open question.

3.    Returning to Example 1, it is easily verified that in case (iii) the

quadratic expression (7) takes the form

V = a0u2 + (Am)2.

a position toBy generalizing this expression slightly we are in a position to obtain a

maximum principle for the following equation

(12) A2m + a0(x)u = 0   in D

where a0(x)>0, is of class C(D) r\C2(D). Specifically we set

(13) V = a.(x)u2 + ß(x)(Auf

where a and ß will be determined later. Applying the Laplacian to (13) and

making use of (12) gives

A V = u2 Aa + 2a Igrad m|2 + 4m grad u • grad a

(14) + (Am)2 Aß + 2ß Igrad Am|2 + 4 Am grad Am • grad ß

+ 2m Am(ix — ßa0).

Choosing

(15) a > 0,        ß>0,

and setting

(16) a = ßa0

in (14), and simplifying, we obtain

A F ^ M2[Aa - (2/a) Igrad a|2] + (A«)2[A,S - (2/j8) Igrad ß\2]

+ 2x Igrad u + (M/a)grad <x|2 + 2/3 Igrad Am + (Aw//S)grad ß\2

= M2[-«2 A(l/oc)] + (Au)2[-ß2A(\lß)l

Consequently, V will be subharmonic if in addition to (15) and (16),

1/a and 1//S are superharmonic, i.e.,

(17) A(l/a) =- 0,        A(l/j8) = 0.
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Choosing <x=l, ß = l/a0, it follows that (15), (16) and (17) are satisfied

provided a0 is superharmonic, i.e., Aa0^0. Proceeding as in Theorem 1,

we find that if Am=0 on dD, then there exists a point x0 e dD such that

|m(jc)|^|m(x0)| for all x e D.

Choosing a=iz0, ß = \, then (15), (16) and (17) are satisfied provided

l/a0 is superharmonic, i.e., A(l/a0)^0. Consequently, if Atz=0 on dD,

we find

|k(x)| = (a0(x0)/a0(x))1/2 |m(x0)| = Ac* |u(x0)|

where k* = (a0(x0))1/2/min5(a0(x))1/2.

In summary, we have proved the following:

Theorem 2.   Ifa0(x)>0 belongs to class C(D)nC2(D) and if

A(l/a0) <; 0   or   Aa0 <; 0,

then every regular solution of (12), which satisfies Aw=0 on dD, satisfies

inequality (4).

4. The preceding results carry over with little difficulty to the case in

which the Laplacian is replaced throughout by the general elliptic operator

Z aa(x) ;—r- .      au = an>
i.i=i dxidxj

provided one of the two matrices (ai}) or B is diagonal.
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