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ON INVERTIBLE  OPERATORS  AND INVARIANT  SUBSPACES

AVRAHAM  FEINTUCH1

Abstract. Let A be an invertible operator on a complex Hubert

space H. Sufficient conditions are given for the inverse of A to be a

weak limit of polynomials in A.

1. Introduction. Let H be a complex Hubert space. If H is finite

dimensional and A is an invertible linear operator on H, then there is a

polynomial p such that A~l =p(A). The infinite-dimensional analogue

of this fact is generally false. If U is any unitary operator which contains

a bilateral shift direct summand, then U~l = U* is not a weak limit of

polynomials in U [4]. In this paper two sufficient conditions, quite

different in nature, are given for the inverse of a bounded linear operator

to be a weak limit of polynomials in the operator.

2. Preliminaries. If A is a bounded linear operator on A, then Lat .4

represents the lattice of closed invariant subspaces of A. Hm will denote

the usual orthogonal direct sum of n copies of //. A typical vector in //<"'

will be denoted by (xx, ■ ■ ■ , xn) with x, £ //. If A is an operator on H,

let A<n> denote the operator 2?=i © A( on //<n) with A¡=A for all /'. The

inner product on H will be denoted by ( ,   ).

The following lemma is a special case of a well-known result [3].

Lemma 1. Let A be a bounded invertible operator on H. If Lat A(n) £

Lat A~1(-n) for all integers n_^ 1, then A~* is a weak limit of polynomials in A.

3. Numerical range.

Definition.    Let A be a bounded operator on //. The numerical range

of A is the set a>(A) = {(Ax, x): ||x|| = l}.

Lemma 2.    If A e B(H), then o)(A) = io(Aw)for all integers n= 1.
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Proof. Suppose t e a>(A). Then there is a unit vector x in H such that

(Ax, x)=t. A consideration of (A{n)y,y), for y=(x, 0, • • • , 0), gives

f £ w(A{n)). Thus œ(A)cco(A<">).

Now suppose f is in w(A^). Thus there exist vectors xx, ■ ■ ■ , x„ in

H with 2LilWI2 = l such that 2"«i C-***, *,•) = '• Now l/||jfj|2(^x¿, xf) £
co(^) for 1 _W^/7. Since co(/i) is convex, it follows that

ÍlWI2^-204xi(x¿)
¿=i       Ik II

is in cu(^4). This completes the proof.

Lemma 3. Let A be a bounded invertible operator on H. Then 0 ^ m(A)

implies Lat A c Lat A~x.

Proof. Suppose there is M £ Lat A which is not invariant under A-1.

Since A is invertible, it follows that AM is a closed subspace of M. Let

N=MQAM.
Let x be a unit vector in N. Nez M implies Ax e AM and thus (Ax, x)=0.

Since 0 ^ a>(A), TV" must be zero.

Notation. The weak closure of the algebra of polynomials in A will

be denoted by UA.

Theorem 1. If A is an invertible operator on H and 0$co(A), then

Uj = UA-,

Proof. 0$a>(A) implies 0 $ (»(A^1). For, if there exists feH such

that (/4_1/,/)=0, then since A is invertible, f=Ag, g e H. Thus

0 = (A-y,f) = (A-iAg, Ag) = ig, Ag) = (A*g, g).

By normalizing, if necessary, and using the fact that u>(A*)=(co(A))*

we obtain 0 £ co(A).

Thus the result will be symmetric in A and A~x. The fact that Lat A^ =

Lat A~1{-n) follows immediately from Lemmas 2 and 3. This completes the

proof.

4. Operator ranges.

Definition. A linear manifold L<=H is an operator range if there

exists a Hubert space K and a bounded operator A from K to H such

that L=AK. The idea of studying the invariant operator ranges of an

algebra of operators was introduced by Foias [2] and the basic facts

about operator ranges can be found in an excellent account by Fillmore

and Williams [1].

If A is a bounded invertible operator on H, then a necessary condition

for A-1 e UA is Lat A cz Lat A-1. It is not known if this is also sufficient.

= 2 (¿Xi, xt) = f
<-i
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However, if every invariant linear manifold of A is invariant under A-1,

it follows from a result of P. Fillmore that A~x=p(A) for some polynomial

p. Here we present what could be considered the intermediate result.

The lattice of invariant operator ranges of A will be denoted by Lat1/2 A.

Theorem 2. Let A be an invertible operator on H. Then Lat1/2 A a

Lat1/2 A'1 implies A~x e UA.

Proof. We show, by induction, that Lat Am £ Lat A~^"K By hypoth-

esis, it is true for n= 1 so assume Lat A^i c Lat A~1^ for i<n and suppose

M £ Lat Am. We consider two cases.

Case (1). M does not contain a vector of the form (0, yx, ■ ■ ■ , yn_x)

other than the zero vector. Then the first component uniquely determines

every other component and, since M is a linear space, this determination

is linear. Thus there exist (possibly unbounded) linear transformations

T\, ■ ■ ■ , T„_x such that

M = {(x, Txx, • • • , Tn_xx) :x e D)

where

D = {x-3xx, • • • , xn_x with (x, xx, • ■ • , *„_!> £ M}.

Since M is closed and D is the range of the projection onto the first

coordinate space of M, D is an operator range. M e Lat A{n) implies

D e Lat1/2 A <= Lat1/2 A-1.

Now M £ Lat ^<"> implies ATt= TtA for 1 <i<n-l. Thus

A-xTt = A^TiAA-1 = A^ATfA-1 = T(A-\

Thus M e Lat A~^nK

Case (2). Assume M contains a nontrivial vector (0,yx, ■ • • ,yn-X).

Let

^={<0,/1,---,jn_1)£M}.

By the induction hypothesis Ne Lat j4_1<">:

Let M' = MQN. The argument used in Case (1) shows that M' is of the

form {(x, Txx, ■ • ■ , Tn_xx) : x e D} with D e Lat1/2 A c Lat1/2 A~\ If

(x, Txx, • • • , Tn_xx) £ M', then

A^{x, Txx, • • • , Tn_xx) = (Ax, TxAx, ■ ■ ■ , Tn_xAx)

+ (0, (ATX - TxA)x, • ■ • , (ATn_x - Tn_xA)x),

where the first term is in M' and the second in N. Since A^ £ Lat A~lm,

A-ii»K0, (ATX - TxA)x, ■■■, (ATn_x - Tn„xA)x)

= (0, Txx, ■■■ , Tn_xx) - (0, A-xTxAx, ■■■ , A^Tn_xAx)
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is in N. Let Q be the projection on N1- in //'"'. Then since (0, Txx, ■ ■ ■ ,

Tn_xx)eN^,

(0, Txx, ■■• , Tn_xx) = 0(0, A-iTxAx, ■■■ , A~lTn_xAx).

We must show that A-^n\x,Txx,-■ ■ ,Tn_xx) e M. Since AD = D,

there is some y e D such that x=Ay. Thus (x, Txx, • • ■ , Tn_xx) =

(Ay, TxAy, • • • , Tn_xAy). Then

A-M«)(X, Txx, ■■■ , Tn_xx) = (y, A-'TxAy, ■■■, A^Tn_xAy)

= (y, 0, • • •, 0) + (0, A-^Ay, ■ • • , A^T^Ay)

= (y, 0, • • ■ , 0) + ß(0, A~iTxAy, ■■■, A^T^Ay)

+ (/<»> - 0(0, A-^TxAy, ■ ■ • ,A^Tn_xAy)

= (y, 0, ■ • • , 0) + (0, Txy, ■■■, Tn^xy)

+ (/<"> - 0(0, A-^TxAy, ■ ■ ■ ,A^Tn_xAy)

= (y, Txy, • • • , Tn_xy)

+ (/<"> - 0(0, A~^TxAy, ■■■ , A^Tn_xAy),

which is clearly in M. This completes the proof.
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