A TYCHONOFF ALMOST REALCOMPACTIFICATION

R. GRANT WOODS¹

ABSTRACT. Let X be a Tychonoff topological space. A Tychonoff almost realcompact space aX is constructed that contains X as a dense subspace and has the property that if $f: X \rightarrow Y$ is continuous and Y is Tychonoff and almost realcompact, then f can be extended continuously to aX. Several characterizations of aX are given, and the relationships between aX, the Hewitt realcompactification vX, and the minimal c-realcompactification uX are investigated. Properties of the projective covers of these spaces, and their relation to vE(X) (E(X) denotes the projective cover of X), are discussed.

1. Introduction. In [3], Frolik calls a Hausdorff topological space X almost realcompact if, given any ultrafilter \mathcal{U} of open subsets of X such that $\bigcap_{n\in\mathbb{N}}\operatorname{cl}_XU_n\neq\emptyset$ for each countable subfamily $(U_n)_{n\in\mathbb{N}}$ of \mathscr{U} , then $\bigcap \{\operatorname{cl}_X U : U \in \mathcal{U}\} \neq \emptyset$. Frolik proved that the topological product of an arbitrary family of almost realcompact spaces is almost realcompact, and that a closed subspace of a regular almost realcompact space is almost realcompact. It follows from these results (and a theorem of Herrlich and van der Slot [7]) that corresponding to each Tychonoff space X there exists an almost realcompact space aX with the following properties: $X \subseteq aX \subseteq \beta X$ (the Stone-Čech compactification of X), and if f is a continuous function from X into any Tychonoff almost realcompact space Y, then f can be continuously extended to a function $f^a:aX \rightarrow Y$. In §2 we obtain a characterization of aX and discuss some of its properties. In §3 we discuss the relationship between aX and the c-real compactification uX of X(see [2]), and consider the properties of the projective covers of these spaces. Finally, a comparison is made between aX and the Liu-Strecker almost realcompactification ρX that lies between X and its Katětov H-closed extension (see [8]). The notation and terminology of [4] are used throughout.

Received by the editors March 19, 1973.

AMS (MOS) subject classifications (1970). Primary 54D99; Secondary 54D60, 54G05.

Key words and phrases. Almost realcompactification, Tychonoff space, projective cover, c-realcompactification.

¹ This research was partially supported by a grant from the National Research Council of Canada.

[©] American Mathematical Society 1974

A subset A of a topological space X is regular closed if $A = \operatorname{cl}_X(\operatorname{int}_X A)$. The family $\mathcal{R}(X)$ of all regular closed subsets of X is a complete Boolean algebra under the following operations:

- (1) $A \leq B$ iff $A \subseteq B$,
- (2) $\bigvee_{\alpha} A_{\alpha} = \operatorname{cl}_{X}[\bigcup_{\alpha} A_{\alpha}],$
- (3) $\bigwedge_{\alpha} A_{\alpha} = \operatorname{cl}_{X} \operatorname{int}_{X} [\bigcap_{\alpha} A_{\alpha}],$
- (4) $A' = \operatorname{cl}_X(X A)$.

It is immediate that Tychonoff almost realcompact spaces can be characterized as follows:

1.1 THEOREM. A Tychonoff space X is almost realcompact if and only if each ultrafilter on $\mathcal{R}(X)$ with the countable intersection property (C.I.P.) has nonempty intersection.

To conclude our introductory remarks, we briefly describe the projective cover, or absolute, of a Tychonoff space. A more detailed discussion may be found in [11]. Recall that a Hausdorff space is extremally disconnected if each of its open subsets has an open closure. If X is a Tychonoff space, then the Stone space $E(\beta X)$ of the Boolean algebra $\mathcal{R}(\beta X)$ is a compact extremally disconnected Hausdorff space whose points are ultrafilters on $\mathcal{R}(\beta X)$. If $A \in \mathcal{R}(\beta X)$, let $\lambda(A) = \{\alpha \in E(\beta X) : A \in \alpha\}$; then the map $A \rightarrow \lambda(A)$ is a Boolean algebra isomorphism from $\mathcal{R}(\beta X)$ onto the Boolean algebra of open-and-closed subsets of $E(\beta X)$. Define $k: E(\beta X) \rightarrow \beta X$ as follows: if $\alpha \in E(\beta X)$, put $k(\alpha) = \bigcap \{A : A \in \alpha\}$. Then (see [5]) k is a welldefined continuous function from $E(\beta X)$ onto βX , k is irreducible (i.e. proper closed subsets of $E(\beta X)$ are mapped onto proper closed subsets of βX by k), and $k[\lambda(A)] = A$ for each $A \in \mathcal{R}(\beta X)$. Now $k^{\leftarrow}[X]$ is a dense, extremally disconnected, C^* -embedded subspace of $E(\beta X)$, and the restriction k_X of k to $k^{\leftarrow}[X]$ is a perfect irreducible map from $k^{\leftarrow}[X]$ onto X. The space $k^{\leftarrow}[X]$ can thus be identified with the projective cover E(X)of X (in the category of Tychonoff spaces and perfect maps) discussed by Strauss in [10]. Evidently $E(\beta X) = \beta E(X)$, and if $X \subseteq T \subseteq \beta X$, then $k^{\leftarrow}[T] = E(T)$.

- 2. The construction of aX. The following result of Herrlich and van der Slot appears as a corollary of Theorem 1 of [7].
- 2.1 Theorem. Let \mathcal{P} be a topological property (of Tychonoff spaces) with the following properties:
- (a) If each member of a family \mathscr{F} of topological spaces has \mathscr{P} , then the product space $\prod \{F: F \in \mathscr{F}\}$ has \mathscr{P} .
 - (b) If X has \mathscr{P} and S is a closed subspace of X, then S has \mathscr{P} .
 - (c) Compact spaces have P.

Then for each Tychonoff space X there exists a "maximal \mathcal{P} -extension" of X, denoted by γX , with the following properties:

- (1) γX is a Tychonoff space containing a dense copy of X.
- (2) γX has \mathscr{P} .
- (3) If Y is a Tychonoff space with \mathcal{P} and if $f: X \to Y$ is continuous, then f can be continuously extended to a function $f^{\gamma}: \gamma X \to Y$.
- (4) If $\bar{\gamma}X$ is another space satisfying (1)–(3), there is a homeomorphism from γX onto $\bar{\gamma}X$ that fixes X pointwise.
- (5) γX can be identified with the intersection of all subspaces of βX that contain X and have \mathcal{P} .

As an immediate consequence of the above theorem, we derive the following result.

- 2.2 Theorem. Corresponding to each Tychonoff space X there exists a Tychonoff almost realcompact space aX with the following properties:
 - (1) $X \subseteq aX \subseteq \beta X$.
- (2) If f is a continuous function from X to a Tychonoff almost realcompact space Y, then f has a continuous extension f^a that maps aX into Y.

In fact aX is the intersection of all the almost real compact subspaces of βX that contain X, and f^a is the restriction to aX of the Stone extension f^{β} of f that maps βX into βY .

PROOF Let \mathscr{P} be the topological property "almost realcompact and Tychonoff". Theorem 7 of [3] says that condition (a) of 2.1 is fulfilled for this \mathscr{P} , while Theorem 5 of [3] says that condition (b) of 2.1 is fulfilled. As each compact space obviously is almost realcompact, claims (1) and (2) above immediately follow from 2.1. Since $f^{\beta}|aX$ and f^{α} both map aX into βY and agree on X, they are equal. \square

Theorem 2.2 tells us that aX exists and that $X \subseteq aX \subseteq \beta X$; it does not tell us which points of $\beta X - X$ will be found in aX. As an analogy, the Hewitt realcompactification vX of X consists of those points P of P0 such that the P1-ultrafilter on P2 that converges to P3 has C.I.P. We wish to derive a similar characterization of P2. We begin with some technical lemmas. The first is a well-known result that follows easily from 8.7 of [4].

2.3 THEOREM. Let X be a Tychonoff space. Then $vX = \{p \in \beta X : each G_{\delta}\text{-set of } \beta X \text{ that contains } p \text{ meets } X\}.$

Let X be a Tychonoff space. An ultrafilter $\mathscr A$ on $\mathscr R(X)$ is said to converge to a point $p \in \beta X$ if $\{p\} = \bigcap \{\operatorname{cl}_{\beta X} A : A \in \mathscr A\}$. Evidently $\mathscr A$ converges to p if and only if $k(\alpha) = p$, where $k : E(\beta X) \to \beta X$ is the map defined in §1 and $\alpha = \{\operatorname{cl}_{\beta X} A : A \in \mathscr A\}$. Let $a_1 X$ denote the set $\{p \in \beta X :$ there exists an ultrafilter $\mathscr A$ on $\mathscr R(X)$ with C.I.P. that converges to $p\}$. If p is a positive

integer greater than 1, we define a_nX inductively as follows: $a_nX = a_1(a_{n-1}X)$.

We shall need the following result, which appears as 2.18 of [12].

2.4 LEMMA. Let X be a Tychonoff space. Then

$$vE(X) = \{\alpha \in E(\beta X) : \{A \cap X : A \in \alpha\} \text{ has } C.I.P.\}.$$

2.5 LEMMA. Let X be a Tychonoff space. Let $k: E(\beta X) \rightarrow \beta X$ be the canonical map defined in §1. Then $k[vE(X)] = a_1 X$.

PROOF. Let $\alpha \in vE(X)$. Then $\{A \cap X : A \in \alpha\}$ has C.I.P. by 2.4, and converges to $k(\alpha)$. Hence $k(\alpha) \in a_1X$. Conversely, if $p \in a_1X$, find an ultrafilter $\mathscr A$ on $\mathscr R(X)$ such that $\mathscr A$ has C.I.P. and $\mathscr A$ converges to p. Put $\alpha = \{cl_{\beta X} A : A \in \mathscr A\}$. Then $\mathscr A = \{A \cap X : A \in \alpha\}$, so $\alpha \in vE(X)$ by 2.4. Evidently $k(\alpha) = p$, so $p \in k[vE(X)]$. The lemma follows. \square

We shall need the following result which appears, among other places, as Theorem 1.7 of [1].

2.6 THEOREM. The Tychonoff space X is almost realcompact if and only if E(X) is realcompact.

We need one more technical lemma, which perhaps is of independent interest.

2.7 LEMMA. Let X be a Tychonoff space, and let $(T_n)_{n\in N}$ be a countable family of realcompact spaces such that $X\subseteq T_n\subseteq \beta X$ for each $n\in N$. Then $\bigcup_{n\in N}T_n$ is realcompact.

PROOF. Put $Y = \bigcup_{n \in N} T_n$. As $X \subseteq Y \subseteq \beta X$, it follows that $\beta Y = \beta X$ (see 6.7 of [4]). Hence to show that Y is realcompact, it suffices to show that if $p \in \beta X - Y$, then there is a G_δ -set of βX containing p and disjoint from Y. But if $p \in \beta X - Y$, then $p \in \beta X - T_n$ for each $n \in N$, so as $\beta T_n = \beta X$ (since $X \subseteq T_n \subseteq \beta X$), there exists a G_δ -set G_n of βX such that $p \in G_n$ and $G_n \cap T_n = \emptyset$. Put $G = \bigcap_{n \in N} G_n$. Then G is a G_δ -set of βX containing p and disjoint from Y. Hence Y is realcompact. \square

2.8 THEOREM. Let X be a Tychonoff space. Then $aX = \bigcup_{n \in \mathbb{N}} a_n X$.

PROOF. Repeated use of Lemma 2.5 shows that $k[vE(a_nX)] = a_{n+1}X$ and $vE(a_nX) \subseteq E(a_{n+1}X) \subseteq vE(a_{n+1}X)$ for each $n \in \mathbb{N}$. Thus

$$E\bigg(\bigcup_{n\in N}a_nX\bigg)=k^{\leftarrow}\bigg[\bigcup_{n\in N}a_nX\bigg]=\bigcup_{n\in N}E(a_nX)=\bigcup_{n\in N}vE(a_nX).$$

By Lemma 2.7, $\bigcup_{n\in N} vE(a_nX)$ is realcompact. Hence by 2.6, $\bigcup_{n\in N} a_nX$ is almost realcompact. Hence $aX\subseteq \bigcup_{n\in N} a_nX$.

Each realcompact space is almost realcompact (see Theorem 10 of [3]), and each almost realcompact extremally disconnected space is realcompact (see Theorem 1.2 of [1]). Hence aE(X)=vE(X). But the extension of the mapping $k_X: E(X) \rightarrow X$ to aE(X) maps aE(X) into aX (see 2.2); hence by 2.5 $a_1X \subseteq aX$. It then follows from 2.2 that $a(a_1X)=aX$. A repetition of this argument shows that $a_nX \subseteq aX$ for each $n \in N$. Hence $\bigcup_{n \in N} a_nX \subseteq aX$, and so $\bigcup_{n \in N} a_nX = aX$. \square

It is natural to conjecture that $aX=a_1X$ for any Tychonoff space X. I have been unable either to prove this conjecture or find a counterexample to it. More generally, it is possible that for each Tychonoff space X, $aX=a_nX$ for some positive integer n (perhaps depending on X). It is evident that if a_nX is almost realcompact for some $n \in N$, then $a_kX=a_nX$ for each $k \ge n$.

We now consider some of the properties of aX. Note that since each realcompact space is almost realcompact, $aX \subseteq vX$ for each Tychonoff space X.

- 2.9 THEOREM. Let X be a Tychonoff space. Then:
 - (i) vX is not locally compact at any part of $vX-a_1X$.
- (ii) $\beta X vX$ is dense in $\beta X aX$.
- (iii) If vX is locally compact then $a_1X=aX=vX$.

PROOF. (1) In Theorem 2.8 of [12] it is shown that $E(\beta X) - E(vX)$ is dense in $E(\beta X) - vE(X)$. Applying the map k, and noting that $\beta X - a_1 X \subseteq k[E(\beta X) - vE(X)]$, we conclude that $\beta X - vX$ is dense in $\beta X - a_1 X$. Thus $\operatorname{cl}_{\beta X}(\beta X - vX) = \operatorname{cl}_{\beta X}(\beta X - a_1 X)$. But $\beta X - \operatorname{cl}_{\beta X}(\beta X - vX) = \{p \in vX : vX \text{ is locally compact at } p\}$ (see 1.10 of [11]). Hence (i) follows. Statement (ii) now follows from the fact that $\beta X - vX \subseteq \beta X - a_1 X \subseteq \beta X - a_1 X$, and statement (iii) follows immediately from statement (i).

Some attention has been devoted to finding conditions on a pair of Tychonoff spaces X and Y that are equivalent to the truth of the equation $v(X \times Y) = vX \times vY$. A general solution of this problem has not been obtained. The following result relates this question to the corresponding question about almost realcompactifications.

2.10 THEOREM. Let X and Y be Tychonoff spaces. If $v(X \times Y) = vX \times vY$, then $a(X \times Y) = aX \times aY$.

PROOF. In general $X \times Y \subseteq a(X \times Y) \subseteq v(X \times Y)$. Since $vX \times vY = v(X \times Y) \subseteq \beta(X \times Y)$, it follows that $aX \times aY$ is an almost realcompact subspace of $\beta(X \times Y)$ that contains $X \times Y$. Hence $a(X \times Y) \subseteq aX \times aY$, so both $X \times aY$ and $a(X \times Y)$ are contained in $aX \times aY$. If $(p,q) \in X \times aY - a(X \times Y)$, then since $\{p\} \times aY$ and $a(X \times Y)$ are almost realcompact subspaces of the regular almost realcompact space $aX \times aY$, it follows that

their intersection is almost realcompact (see Theorem 7 of [3]; note that regularity is needed). Thus $[\{p\} \times aY] \cap [a(X \times Y)]$ is almost realcompact and is properly contained in $\{p\} \times aY$ while containing $\{p\} \times Y$. This is a contradiction, so it follows that $X \times aY \subseteq a(X \times Y)$; evidently $a(X \times aY) = a(X \times Y)$. A repetition of this argument (with $aX \times aY$ in place of $X \times aY$) yields that $aX \times aY \subseteq a(X \times Y)$. Hence $aX \times aY = a(X \times Y)$.

- 3. Almost realcompactifications and c-realcompactifications. A Tychonoff space X is said to be c-realcompact if for each point $p \in \beta X X$ there exists a normal lower semicontinuous function f on βX (see [9]) such that f(p) = 0 and f is positive on X. Dykes defined c-realcompact spaces in [2]; they are discussed in some detail in [6]. The following result may be found in 1.1 and 2.5 of [6].
- 3.1 THEOREM. Let X be a Tychonoff space. Let $uX = \{p \in \beta X : each ultrafilter on \mathcal{R}(X) \text{ that converges to p has C.I.P.}\}$. Then:
 - (1) uX is the smallest c-realcompact space between X and βX .
- (2) X is c-real compact if and only if given $p \in \beta X X$, there exists a decreasing sequence $(A_n)_{n \in \mathcal{N}} \subseteq \mathcal{R}(\beta X)$ such that $p \in \bigcap_{n \in \mathcal{N}} A_n$ and $\bigcap_{n \in \mathcal{N}} A_n \cap X = \emptyset$.

The space uX is called the c-realcompactification of X.

It is proved in 3.3 of [2] that each almost real compact space is c-real-compact. Hence if X is a Tychonoff space, then $X \subseteq uX \subseteq aX \subseteq vX$. The relationship between uX and aX is clarified in the following.

- 3.2 LEMMA. Let X be a Tychonoff space. Then:
- (a) aX is the smallest space T between X and βX such that E(T) is real-compact. In particular, $vE(X) \subseteq E(aX)$.
 - (b) uX is the largest space T between X and βX such that $E(T) \subseteq vE(X)$.

PROOF. Recall that $X \subseteq T \subseteq \beta X$ iff $E(X) \subseteq E(T) \subseteq E(\beta X) = \beta E(X)$. Part (a) now follows from 2.2 and 2.6.

Let $\alpha \in E(uX)$. Then α is an ultrafilter on $\mathcal{R}(\beta X)$ such that $\{A \cap X : A \in \alpha\}$ converges to $k(\alpha) \in uX$. Thus $\{A \cap X : A \in \alpha\}$ has C.I.P., and so $\alpha \in vE(X)$ by 2.4. Hence $E(uX) \subseteq vE(X)$. Conversely, if $p \in \beta X - uX$, there is an ultrafilter α on $\mathcal{R}(\beta X)$ such that $\{A \cap X : A \in \alpha\}$ converges to p but does not have C.I.P. Hence $\alpha \notin vE(X)$ so $k^{\leftarrow}(p) - vE(X) \neq \emptyset$. Hence (b) holds.

- 3.3 THEOREM. The following conditions on a Tychonoff space X are equivalent:
 - (a) vE(X)=E(T) for some T such that $X \subseteq T \subseteq \beta X$.
 - (b) vE(X)=E(aX).
 - (c) uX=aX.
 - (d) $uX = a_1X$.

PROOF. (a) \Rightarrow (b): If vE(X)=E(T) for some T such that $X\subseteq T\subseteq \beta X$, then E(T) is realcompact so T is almost realcompact. Hence $aX\subseteq T$. But by 3.2(a), $vE(X)\subseteq E(aX)$, so $T\subseteq aX$. Hence T=aX.

(b) \Rightarrow (c): Evidently $E(aX) \subseteq vE(X)$ so, by 3.2(b), $aX \subseteq uX$. Hence aX = uX.

(c) \Rightarrow (d): In general $uX \subseteq a_1X \subseteq aX$, so if uX = aX then $uX = a_1X$.

(d) \Rightarrow (a): By 2.5, $k[vE(X)]=a_1X$ so $vE(X)\subseteq E(a_1X)$. Thus $E(uX)\subseteq vE(X)\subseteq E(a_1X)=E(uX)$ so vE(X)=E(uX). \square

An example of a Tychonoff space X such that $uX \neq aX$ can be found in the example on pp. 240-241 of [9]. It is constructed as follows: let T be the Tychonoff plank (see 8.20 of [4]), let $A=W^*\times\{\omega\}$ and $B=\{\omega_1\}\times N^*$ denote, respectively, the top and right edge of T^* . Let X^* denote the space obtained from $T^*\times N$ by identifying $A\times\{2n-1\}$ with $A\times\{2n\}$ and identifying $B\times\{2n\}$ with $B\times\{2n+1\}$. Let t denote the corner point (ω_1, ω, n) of X^* , and put $X=X^*-\{t\}$. Mack and Johnson show in [9] that $X^*=vX$ and that X is not weak cb (see §3 of [9]) while X^* is weak cb. In Theorem 1.11 of [6] it is shown that X is weak cb iff uX is weak cb. Hence X=uX, i.e. X is c-realcompact.

Let $f: T^* \times N \to X^*$ denote the identification map described above. Then f takes $T \times N$ onto X. Obviously $T^* \times N = v(T \times N)$, so by 2.9(iii), $a(T \times N) = T^* \times N$. Hence the extension of $f \mid T \times N$ to $T^* \times N$ maps $T^* \times N$ into aX. But $f \mid T^* \times N \mid = X^* = vX$, so $aX = vX \neq uX$.

We conclude this paper by comparing the Strecker-Liu almost real-compactification ρX of X (see [8]) to αX and αX . Recall that the Katětov H-closed extension αX of the Hausdorff space X is formed as follows: Let Y be the family of all open ultrafilters \mathcal{U} on X such that

$$\bigcap \{\operatorname{cl}_X U \colon U \in \mathscr{U}\} = \varnothing,$$

and let $\kappa X = X \cup Y$, topologized as follows: open subsets of X remain open in κX , and if $p \in Y$ then $\{\{p\} \cup G : G \in p\}$ is a neighbourhood base at p in κX . Then κX is a Hausdorff space that is a closed subspace of each Hausdorff space in which it can be embedded (i.e. κX is H-closed), and if hX is any other H-closed Hausdorff space that contains X as a dense subspace, then there is a continuous map from κX onto hX that fixes X pointwise. Let $\rho X = X \cup \{p \in Y : \bigcap_{n \in N} \operatorname{cl}_X G_n \neq \emptyset$ for each countable subfamily $(G_n)_{n \in N}$ of $p\}$. Liu and Strecker prove that ρX (endowed with the subspace topology inherited from κX) is an almost realcompact Hausdorff space with the property that if S is an an almost realcompact Hausdorff space that contains X as a dense subspace, then ρX can be mapped into S by a continuous function that fixes X pointwise. Thus ρX plays the same role in the class of Hausdorff spaces as aX plays in the class of Tychonoff spaces.

The relation between ρX , $a_1 X$, and a X is described in the following theorem.

- 3.4 THEOREM. Let X be a Tychonoff space and let $f: \kappa X \rightarrow \beta X$ be the unique continuous function that is the identity on X. Then:
 - (1) $f[\rho X] = a_1 X$.
 - (2) $\rho X = f^{-} f[\rho X]$ if and only if $uX = a_1 X$.

PROOF. (1) It is easily seen that, if $p \in \kappa X - X$, then

$$f(p) = \bigcap \{ \operatorname{cl}_{\beta X} U : U \in p \}.$$

If $p \in \rho X - X$, then $\{\operatorname{cl}_X U : U \in \mathscr{U}\}$ is an ultrafilter on $\mathscr{R}(X)$ with C.I.P. that converges to $f(p) \in \beta X$. Thus $f(p) \in a_1 X$. Conversely, if $q \in a_1 X$, then find an ultrafilter \mathscr{A} on $\mathscr{R}(X)$ with C.I.P. such that \mathscr{A} converges to q. Let $p = \{V : V \text{ is open in } X \text{ and int}_X A \subseteq V \text{ for some } A \in \mathscr{A}\}$. Then $p \in \rho X$ and f(p) = q. Hence $f[\rho X] = a_1 X$.

(2) Assume that $\rho X = f^+[f[\rho X]] = f^+[a_1X]$. Let $q \in a_1X$ and let $\mathscr A$ be any ultrafilter on $\mathscr R(X)$ that converges to q. Let $p = \{V : V \text{ is open in } X \text{ and int}_X A \subseteq V \text{ for some } A \in \mathscr A\}$. Then $p \in \kappa X$ and f(p) = q. Thus $p \in f^+[a_1X] = \rho X$. Hence $\mathscr A$ has C.I.P., and so each ultrafilter on $\mathscr R(X)$ that converges to q has C.I.P. Hence $q \in uX$ and so $a_1X \subseteq uX$. But $uX \subseteq a_1X$ in general, so $uX = a_1X$. Conversely, if $uX = a_1X$, let $p \in f^+[a_1X] = f^+[uX]$. Then the ultrafilter $\{cl_X V : V \in p\}$ on $\mathscr R(X)$ converges to $f(p) \in uX$. Thus this ultrafilter has C.I.P., and so $p \in \rho X$. Thus $f^+f[\rho X] = \rho X$. \square

REFERENCES

- 1. N. Dykes, Mappings and realcompact spaces, Pacific J. Math. 31 (1969), 347-358. MR 41 #7644.
- 2. ——, Generalizations of realcompact spaces, Pacific J. Math. 33 (1970), 571-581. MR 43 #2668.
- 3. Z. Frolik, A generalization of realcompact spaces, Czechoslovak Math. J. 13 (88) (1963), 127-138. MR 27 #5224.
- 4. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 5. A. M. Gleason, *Projective topological spaces*, Illinois J. Math. 2 (1958), 482–489. MR 22 #12509.
- 6. K. Hardy and R. G. Woods, On c-realcompact spaces and locally bounded normal functions, Pacific J. Math. 43 (1972), 647-656.
- 7. H. Herrlich and J. van der Slot, *Properties which are closely related to compactness*, Nederl. Akad. Wetensch. Proc. Ser A 70=Indag. Math. 29 (1967), 524-529. MR 36 #5898.
- 8. C. T. Liu and G. E. Strecker, Concerning almost realcompactifications, Czechoslovak Math. J. 22 (1972), 181-190.
- 9. J. E. Mack and D. G. Johnson, The Dedekind completion of C(X), Pacific J. Math. 20 (1967), 231-243. MR 35 #2150.

- 10. D. P. Strauss, Extremally disconnected spaces, Proc. Amer. Math. Soc. 18 (1967), 305-309
- 11. R. G. Woods, Co-absolutes of remainders of Stone-Čech compactifications, Pacific J. Math. 37 (1971), 545-560.
- 12. ——, Ideals of pseudocompact regular closed sets and absolutes of Hewitt real-compactifications, General Topology and Appl. 2 (1972), 315-331.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, CANADA