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A TYCHONOFF ALMOST  REALCOMPACTIFICATION

R.   GRANT WOODS1

Abstract. Let X be a Tychonoff topological space. A Tychonoff

almost realcompact space aX is constructed that contains JTas a

dense subspace and has the property that if/: X-* Y is continuous

and y is Tychonoff and almost realcompact, then/can be extended

continuously to aX. Several characterizations of aX are given, and

the relationships between aX, the Hewitt realcompactification vX,

and the minimal c-realcompactification uX are investigated. Prop-

erties of the projective covers of these spaces, and their relation to

vE(X) {E{X) denotes the projective cover of X), are discussed.

1. Introduction. In [3], Frolik calls a Hausdorff topological space X

almost realcompact if, given any ultrafilter Qt of open subsets of X such

that f)mN cljc V'n¥" 0 for each countable subfamily (Un)neN of °l¿, then

f] {cljf U:U e °U}^ 0. Frolik proved that the topological product of an

arbitrary family of almost realcompact spaces is almost realcompact,

and that a closed subspace of a regular almost realcompact space is almost

realcompact. It follows from these results (and a theorem of Herrlich and

van der Slot [7]) that corresponding to each Tychonoff space X there

exists an almost realcompact space aX with the following properties:

X^ aX^ /^(the Stone-Cech compactification of A"), and if/is a continuous

function from X into any Tychonoff almost realcompact space Y, then/

can be continuously extended to a function fa:aX-^-Y. In §2 we obtain a

characterization of aX and discuss some of its properties. In §3 we discuss

the relationship between aX and the c-realcompactification uX of X

(see [2]), and consider the properties of the projective covers of these

spaces. Finally, a comparison is made between aX and the Liu-Strecker

almost realcompactification pX that lies between X and its Katëtov

//-closed extension (see [8]). The notation and terminology of [4] are used

throughout.
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A subset A of a topological space X is regular closed if A =cl Y(int Y A).

The family ¿%(X) of all regular closed subsets of X is a complete Boolean

algebra under the following operations :

(1) A^BiffA^B,

(2)yaA=clxl\JaAx],

(3) /\.Aa=clxmtx[r)aAa\,

(4) A'=clx(X-A).
It is immediate that Tychonoff almost realcompact spaces can be charac-

terized as follows :

1.1 Theorem. A Tychonoff space X is almost realcompact if and only if

each ultrafilter on É%(X) with the countable intersection property (C.I.P.)

has nonempty intersection.

To conclude our introductory remarks, we briefly describe the projective

cover, or absolute, of a Tychonoff space. A more detailed discussion

may be found in [11]. Recall that a Hausdorff space is extremally dis-

connected if each of its open subsets has an open closure. If X is a Tycho-

noff space, then the Stone space E(ßX) of the Boolean algebra ¿ft(ßX) is a

compact extremally disconnected Hausdorff space whose points are

ultrafilters on 0t(ßX). If A e 0t(ßX), let AL4) = {a eEißX):A e «.}; then

the map A^-X(A) is a Boolean algebra isomorphism from ¿%ißX) onto the

Boolean algebra of open-and-closed subsets ofE(ßX). Define k : E(ßX)-+ßX

as follows: if a e E(ßX), put k(o.)=(~) {A: A e a}. Then (see [5]) k is a well-

defined continuous function from E(ßX) onto ßX, k is irreducible (i.e.

proper closed subsets of E(ßX) are mapped onto proper closed subsets

of ßX by k), and klX(A)] = A for each A e 0t(ßX). Now k~~lX] is a dense,

extremally disconnected, C*-embedded subspace of E(ßX), and the

restriction kx of k to k~~lX] is a perfect irreducible map from k"~lX] onto

X. The space k~~lX] can thus be identified with the projective cover E(X)

of X (in the category of Tychonoff spaces and perfect maps) discussed

by Strauss in [10]. Evidently E(ßX)=ßE(X), and if X^T^ßX, then

k*~lT]=E(T).

2. The construction of aX. The following result of Herrlich and

van der Slot appears as a corollary of Theorem 1 of [7].

2.1 Theorem. Let 0 be a topological property (of Tychonoff spaces)

with the following properties:

(a) If each member of a family J^ of topological spaces has 0, then the

product space \~~[ {F: F e J5"} has 0.

(b) If X has 0 and S is a closed subspace of X, then S has 0s.

(c) Compact spaces have 0>.
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Then for each Tychonoff space X there exists a "maximal 0-extension" of

X, denoted by yX, with the following properties:

(1) yX is a Tychonoff space containing a dense copy of X.

(2) yX has 0.

(3) If Y is a Tychonoff space with 0 and iff: A"—>- Y is continuous, then

f can be continuously extended to a function fy:yX-+Y.

(4) If yX is another space satisfying (l)-(3), there is a homeomorphism

from yX onto yX that fixes X pointwise.

(5) yX can be identified with the intersection of all subspaces of ßX that

contain X and have 0.

As an immediate consequence of the above theorem, we derive the

following result.

2.2 Theorem. Corresponding to each Tychonoff space X there exists a

Tychonoff almost realcompact space aX with the following properties:

(1) X^aX^ßX.

(2) Iff is a continuous function from X to a Tychonoff almost realcom-

pact space Y, then f has a continuous extension fa that maps aX into Y.

In fact aX is the intersection of all the almost realcompact subspaces of ßX

that contain X, andfa is the restriction to aX of the Stone extension fß of

f that maps ßX into ß Y.

Proof Let 0* be the topological property "almost realcompact and

Tychonoff". Theorem 7 of [3] says that condition (a) of 2.1 is fulfilled

for this 0, while Theorem 5 of [3] says that condition (b) of 2.1 is ful-

filled. As each compact space obviously is almost realcompact, claims

(1) and (2) above immediately follow from 2.1. Since fß\aX and/a both

map aX into ß Y and agree on X, they are equal.    □

Theorem 2.2 tells us that aX exists and that Iç aX^ ßX; it does not

tell us which points of ßX—X will be found in aX. As an analogy, the

Hewitt realcompactification vX of X consists of those points p of ßX such

that the z-ultrafilter on X that converges to p has C.I.P. We wish to

derive a similar characterization of aX. We begin with some technical

lemmas. The first is a well-known result that follows easily from 8.7 of

[41,

2.3 Theorem. Let X be a Tychonoff space. Then vX={p e ßX: each

Gâ-set of ßX that contains p meets X}.

Let X be a Tychonoff space. An ultrafilter sé on 0t(X) is said to converge

to a point p e ßX if {p} — C] {cLjX A:A e sé}. Evidently sé converges to

p if and only if k(a)=p, where k :E(ßX)-*ßX is the map defined in §1 and

a={chjy A:A e sé}. Let axXdenote the set {p eßX: there exists an ultra-

filter sé on 0¿(X) with C.I.P. that converges to p}. If « is a positive



1974] A  TYCHONOFF  ALMOST  REALCOMPACTIFICATION 203

integer greater than  1, we define anX inductively as follows: anX=

We shall need the following result, which appears as 2.18 of [12].

2.4 Lemma.    Let X be a Tychonoff space. Then

vE(X) = {a eE(ßX):{A nX:Ae«.} has C.I.P.}.

2.5 Lemma. Let X be a Tychonoff space. Let k:E(ßX)^ßX be the

canonical map defined in §1. Then k[oE(X)]=axX.

Proof. Let xevE(X). Then {Ar\X:Aea.} has C.I.P. by 2.4, and

converges to k(<x). Hence k(a)eaxX. Conversely, if p e axX, find an

ultrafilter sé on 0¿(X) such that sé has C.I.P. and sé converges to p. Put

oL={c\fXA:Aesé}. Then sé={Ar\X:A e a.}, so *evE(X) by 2.4.

Evidently k(u)=p, so p e k[vE(X)]. The lemma follows.    □

We shall need the following result which appears, among other places,

as Theorem 1.7 of [1].

2.6 Theorem. The Tychonoff space X is almost realcompact if and only

if E(X) is realcompact.

We need one more technical lemma, which perhaps is of independent

interest.

2.7 Lemma. Let X be a Tychonoff space, and let (Tn)neN be a countable

family of realcompact spaces such that Z£ Tn^ßX for each n e N. Then

üneN F„ is realcompact.

Proof. Put Y=[JneNTn. As X^Y^ßX, it follows that ßY=ßX

(see 6.7 of [4]). Hence to show that Y is realcompact, it suffices to show

that if p e ßX— Y, then there is a Gö-set of ßX containing p and disjoint

from Y. But if p e ßX- Y, then p e ßX- Tn for each n e N, so as ßTn=

ßX (since X^ F„ç ßX), there exists a Gá-set G„ of ßX such that p e Gn and

GnC\Tn=0. Put G=f]neNGn. Then G is a Gs-set of ßX containing p

and disjoint from Y. Hence Y is realcompact.    □

2.8 Theorem.    Let X be a Tychonoff space. Then aX=\JneN anX.

Proof. Repeated use of Lemma 2.5 shows that klvE(anX)]=an+xX

and vE(anX)^ E(an+1X)^vE(an+xX) for each ne N. Thus

4 U anx) = öanX
.neN

= U E(anX) = U vE(anX).
ne.V

By Lemma 2.7, \J nBN vE(anX) is realcompact. Hence by 2.6, Unejv'V*'

is almost realcompact. Hence aX<^ \jnsN anX.
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Each realcompact space is almost realcompact (see Theorem 10 of [3]),

and each almost realcompact extremally disconnected space is real-

compact (see Theorem 1.2 of [1]). Hence aE(X)=vE(X). But the extension

of the mapping kx:E(X)->X to aE(X) maps aE(X) into aX (see 2.2);

hence by 2.5 axXÇaX. It then follows from 2.2 that a(axX)=aX. A

repetition of this argument shows that anX^ aX for each ne N. Hence

U nSN anX<^ aX, and so (J neN anX=aX.    D

It is natural to conjecture that aX=axX for any Tychonoff space X. I

have been unable either to prove this conjecture or find a counterexample

to it. More generally, it is possible that for each Tychonoff space X,

aX=anX for some positive integer n (perhaps depending on X). It is

evident that if anX is almost realcompact for some ne N, then akX=anX

for each k~in.

We now consider some of the properties of aX. Note that since each

realcompact space is almost realcompact, aX^vX for each Tychonoff

space X.

2.9 Theorem.    Let X be a Tychonoff space. Then:

(i) vX is not locally compact at any part ofvX—axX.

(ii) ßX-vX is dense in ßX-aX.

(iii) IfvX is locally compact then axX=aX=vX.

Proof. (1) In Theorem 2.8 of [12] it is shown that EißX)-E(vX) is

dense in E(ßX)—vE(X). Applying the map k, and noting that ßX—axX^

klE(ßX)-vE(X)], we conclude that ßX-vX is dense in ßX-axX. Thus

clßX(ßX-vX)=clßX(ßX-axX). But ßX-clßX(ßX-vX)={pevX:vX is

locally compact at p} (see 1.10 of [11]). Hence (i) follows. Statement (ii)

now follows from the fact that ßX— vX^ßX— aX^ßX— axX, and state-

ment (iii) follows immediately from statement (i).    □

Some attention has been devoted to finding conditions on a pair of

Tychonoff spaces X and Y that are equivalent to the truth of the equation

v(Xx Y)=vXxvY. A general solution of this problem has not been

obtained. The following result relates this question to the corresponding

question about almost realcompactifications.

2.10 Theorem. Let X and Y be Tychonoff spaces. If v(Xx Y) =

vXxvY, then a(Xx Y)=aXxaY.

Proof. In general X x Y^a(X x Y)Çv(X x Y). Since vX x vY=

v(Xx Y)^ß(Xx Y), it follows that aXxaY is an almost realcompact

subspace of ß(Xx Y) that contains Xx Y. Hence a(Xx Y)^aXxaY,

so both XxaY and a(Xx Y) are contained in aXxaY. If (p,q)e XxaY—

a(Xx Y), then since {p}xaYand a(Xx Y) are almost realcompact sub-

spaces of the regular almost realcompact space aXxaY, it follows that
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their intersection is almost realcompact (see Theorem 7 of [3]; note that

regularity is needed). Thus l{p}xaY]C\la(Xx Y)] is almost realcompact

and is properly contained in {p}xaY while containing {p}x Y. This isa

contradiction, so it follows that XxaY<^a(Xx Y); evidently a(XxaY) =

a(Xx Y). A repetition of this argument (with aXxaY in place of XxaY)

yields that aXx aY^ a(Xx Y). Hence aXxa Y=a(Xx Y).    □

3. Almost realcompactifications and r-realcompactifications. A Tycho-

noff space X is said to be c-realcompact if for each point p e ßX—X there

exists a normal lower semicontinuous function / on ßX (see [9]) such

thatf(p)=0 and/is positive on X. Dykes defined c-realcompact spaces in

[2]; they are discussed in some detail in [6]. The following result may be

found in 1.1 and 2.5 of [6].

3.1 Theorem. Let X be a Tychonoff space. Let uX={p eßX: each

ultrafilter on 0¿(X) that converges top has C.I.P.}. Then:

(1) uX is the smallest c-realcompact space between X and ßX.

(2) X is c-realcompact if and only if given p eßX—X, there exists a

decreasing   sequence    (An)neX^0i(ßX)   such    that   p e f]neX An    and

ftnesAnnX=0.

The space uX is called the c-realcompactification of X.

It is proved in 3.3 of [2] that each almost realcompact space is c-real-

compact. Hence if X is a Tychonoff space, then X^uX^aX^vX. The

relationship between uX and aX is clarified in the following.

3.2 Lemma.    Let X be a Tychonoff space. Then:

(a) aX is the smallest space T between X and ßX such that EiT) is real-

compact. In particular, vE(X) S E(aX).

(b) uX is the largest space T between X and ßX such that E(T)^vE(X).

Proof. Recall that X^ Fs ßX iff E(X)^ E(T)^ E(ßX)=ßE(X). Part
(a) now follows from 2.2 and 2.6.

Let u.eE(uX). Then a is an ultrafilter on Bt(ßX) such that {AC\X:

A e a.} converges to k(a) e uX. Thus {AC\X:A e a.} has C.I.P., and so

a e vE(X) by 2.4. Hence E(uX)^vE(X). Conversely, if p e ßX-uX, there

is an ultrafilter a on 0l(ßX) such that {AC\X:A e a.} converges top but does

not have C.I.P. Hence a $ vE(X) so k-(p)-vE(X)^ 0. Hence (b) holds.

3.3 Theorem. The following conditions on a Tychonoff space X are

equivalent :

(a) vE(X)=E(T)for some Tsuch that Xç TcßX.

(b) vE(X)=E(aX).

(c) uX=aX.

(d) uX=axX.
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Proof. (a)=>(¿>): If vEiX)=EiT) for some F such that X^T^ßX,

then F(F) is realcompact so F is almost realcompact. Hence aX^ T.

But by 3.2(a), vE(X)=EiaX), so TçaX. Hence T=aX.

(b)=>(c): Evidently E(aX) ÇvE(X) so, by 3.2(b), aXç uX. Hence aX=uX.

(c)=>(d): In general wATs axX^ aX, so if uX=aX then uX=axX.

(d)=>(a): By 2.5, k{oE(X)]=axX so vE(X) = EiaxX). Thus FíhAQs

vEiX) S £(fl!AT)=FiW) so vEiX)=F. («A').    D
An example of a Tychonoff space X such that uX^aX can be found in

the example on pp. 240-241 of [9]. It is constructed as follows: let T

be the Tychonoff plank (see 8.20 of [4]), let A=W*x{co} and B=

{wx}xN* denote, respectively, the top and right edge of T*. Let X*

denote the space obtained from T*xN by identifying Ax{2n — 1} with

A x {2«} and identifying B x {2n} with B x {2n + 1}. Let t denote the corner

point (cox, co, n) of X*, and put X=X* — {t}. Mack and Johnson show in

[9] that X*=vX and that X is not weak cb (see §3 of [9]) while X* is

weak cb. In Theorem 1.11 of [6] it is shown that X is weak cb iff uX is

weak cb. Hence X=uX, i.e. A'is c-realcompact.

Let/: T* x N-*X* denote the identification map described above. Then

/  takes   TxN   onto   X.  Obviously  T*xN=v(TxN), so by 2.9(iii),

a(TxN)=T*xN.   Hence  the  extension of f\TxN to   T*xN maps

T*xN into aX. But/[F*x N] = X*=vX, so aX=vXjtuX.

We conclude this paper by comparing the Strecker-Liu almost real-

compactification pX of X (see [8]) to aX and uX. Recall that the Katetov

H-closed extension kX of the Hausdorff space X is formed as follows :

Let Y be the family of all open ultrafilters <?/ on X such that

D {clA- U: U e %} = 0,

and let kX=XkjY, topologized as follows: open subsets of X remain

open in kX, and if p e Y then {{p}UC:G e p} is a neighbourhood base

at p in kX. Then kX is a Hausdorff space that is a closed subspace of

each Hausdorff space in which it can be embedded (i.e. kX is //-closed),

and if hX is any other //-closed Hausdorff space that contains X as a

dense subspace, then there is a continuous map from kX onto hX that

fixes X pointwise. Let pX=X(J{p e Y: f\neX cl^- Gn¿¿0 for each count-

able subfamily (Gn)neX of p}. Liu and Strecker prove that pX (endowed

with the subspace topology inherited from kX) is an almost realcompact

Hausdorff space with the property that if S is an an almost realcompact

Hausdorff space that contains X as a dense subspace, then pX can be

mapped into S by a continuous function that fixes X pointwise. Thus pX

plays the same role in the class of Hausdorff spaces as aX plays in the

class of Tychonoff spaces.
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The relation between pX, axX, and aX is described in the following

theorem.

3.4 Theorem.    Let X be a Tychonoff space and let f: xX^-ßX be the

unique continuous function that is the identity on X. Then:

il) flpX]=axX
(2) pX=f-flpX] if and only ifuX=axX.

Proof.    (1) It is easily seen that, if p e kX—X, then

f(p)=C\{clßXU:Uep}.

If p e pX-X, then {c\x U: Ue <%} is an ultrafilter on 0¿(X) with C.I.P.

that converges to f(p) e ßX. Thus f(p) e axX. Conversely, if q e axX, then

find an ultrafilter sé on 0i(X) with C.I.P. such that sé converges to q.

Letp = {V: Fis open in AT and intY A^ F for some A e sé}. Then/? 6 pX

and f(p)=q. Hence flpX]=axX.
(2) Assume that pX=f^\flpX]]=f^laxX]. Let q e axX and let sé be

any ultrafilter on 0t(X) that converges to q. Let p = {V: V is open in X and

intxA^V for some A e sé}. Then p e kX and f(p)=q. Thus pe

f^laxX] = pX. Hence sé has C.I.P., and so each ultrafilter on 0l(X) that

converges to q has C.I.P. Hence qeuX and so axX^ uX. But MA'S axX in

general, so uX=axX. Conversely, if uX=axX, let p ef^laxX]=f~luX].

Then the ultrafilter {clx V: Vep} on 01 (X) converges to f(p) e uX. Thus

this ultrafilter has C.I.P., and so p e pX. Thusf^flPX]=PX.    D
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