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STANDARD AND  ALTERNATIVE ALGEBRAS  WITH
COMPLETELY  REDUCIBLE DERIVATION ALGEBRAS

ERNEST  L.  STITZINGER

Abstract. Let 31 be a finite-dimensional standard or alter-

native algebra over a field of characteristic 0. A necessary and

sufficient condition is found such that the derivation algebra of 31

is completely reducible acting on 31.

The following type of result occasionally occurs in the literature:

If 91 is an algebra of a particular type over a field of characteristic 0,

then (with possibly a few exceptions) 91 is semisimple if and only if the

derivation algebra of 91 is semisimple or 0. It seems natural to ask if

placing other natural conditions on the derivation algebra will lead to

characterizations of the algebra. The closest condition to semisimplicity

of the derivation algebra is complete reducibility of the derivation algebra

acting on 91. We show the following:

Theorem. Let 91 be a standard or alternative algebra over a field of

characteristic 0. Then the derivation algebra D(9I) of 91 acts completely

reducibly on 91 if and only if the radical 9Î o/9í is contained in the center (Í

o/9IW9i2=9î9i=0.

The main techniques used are results of Schäfer ([8], [10]) on standard

and alternative algebras and conditions due to Jacobson for linear Lie

algebras to be completely reducible ([5], [6]). All algebras considered

here are finite dimensional and the unexplained notation is as in [9].

1. The standard case. A. A. Albert has defined an algebra to be

standard if the identities

(1) (x, y, z) + (z, x, y) - (x, z,y) = 0

and

(2) (x, y, wz) + (w, y, xz) + (z, y, wx) = 0

are satisfied where (x,y, z) denotes the associator (x, y, z) = (xy)z—x(yz).

Standard  algebras  include  commutative  Jordan  algebras  as  well  as
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associative algebras. Further results in this direction are found in [7]

and [10]. We mention in particular that if 91 is a standard algebra of

characteristic 0, then 9Í is semisimple with each component of dimension

9^3 over its center if and only if £)(9i) is semisimple or zero. However

we do not use this fact here.

Proof of the standard case. Suppose 9Î£(E and 9t2=0. Let

91=51+6 be a Wedderburn decomposition of 91 (Theorem 4 of [10]).

Then S is the vector space direct sum

(3) S = 3 + S' + 93

where 3 is the center of S, S' is the space spanned by all commutators

[x,y]=xy—yx of S and 93 is the space spanned by all associators of S

(Lemma 3 of [10]). We show that D(9I) = D, + D2 where

Dx = {D e £(91); Z): S - S, 2>:9t ̂  0}
and

X>2 = {£>eî>(9I);Z>:<5^0}

and that Dj and 35 2 act completely reducibly on 91. Since X>(9Í) is then the

direct sum of 35] and X>2, 35(91) will act completely reducibly on 91.

Let D e 35(91). Then D restricted to S is a derivation from S into 91

and this can be extended to a derivation D of 91 where

(4) d = rx-lx + 2 tv *y

where x,yt, z¿ e9I by Theorem 6 of [10]. Since 3?£(£, x, yt, z¡ may be

chosen from S so that D e 35, and Z>:S—>-S. For the same reason any

derivation of S can be extended to an element of 35,. Therefore, to show

that 35x acts completely reducibly on 91, it suffices to show that 35(S) acts

this way on S. Since S is semisimple, 35(S)ç£(S) where fi(S) is the

Lie multiplication algebra of S (Theorem 6 of [10]) and £(S) acts com-

pletely reducibly on S. Furthermore, £(S)=/?(S)+L(S)+[L(S), R(Q)]

(Theorem 2 of [10]) where /?(S) (L(S)) is the space of right (left) multi-

plications of S. Also each derivation of S is of the form (4) where x, y¿, z¡eS

since S is semisimple and hence has an identity. It is now clear that

£(S)=î)(S)0«(S) and that [R(Q), D(S)] £/?(S). Now each nilpotent

element of £(S) can be embedded in a 3-dimensional simple Lie algebra

(Theorem 17, p. 100 of [6]) and the same holds for D(S) by Lemma 8,

p. 99 of [6]. Since derivation algebras are almost algebraic (Theorem 16,

p. 179 of [3]), Î)(S) acts completely reducibly on S (Theorem 17, p. 100

of [6]). Hence Î), acts completely reducibly on 91.

We next show that if D e D(9i), then D restricted to 31 commutes with

all Ra, ae3, and conversely any such linear transformation of 9Î can

be extended to an element of T)2. Since 3Í çd, we have (£=SR+3 and (£
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is always a characteristic subspace of 91. Now D restricted to £ is of the

form an inner derivation plus a derivation of (£ which annihilates 3

[4, Theorem 4.3]. Since (£ is commutative, the first of these derivations

is 0. Now if n g 9Î, c g (£, then

(nc)D = (nD)c + n{cD) = (nD)c

since cD g 9Í and 9i2=0. That is, on 9Î,

(5) RCD = DRe

for all c g (L Also any linear transformation D of 9Î which satisfies (5)

can be extended to a derivation £ of d such that zE=0 for all z g 3- In

the same manner as in the proof of Theorem 7 of [10], each of these

latter derivations of £ can be extended to a derivation of 91 which anni-

hilates S'+93. We now see that D(9I)=D1©I)2 where Dx and D2 are

ideals of T)(9T) and that to show î)2 acts completely reducibly on 91 it is

enough to show that D3 = {linear transformations D of 91; D satisfies

(5)} acts completely reducibly on 9Î.

The correspondence R:z^-Rz|(n is an associative homomorphism

of 3 into the algebra of all linear transformations of 9Î. The image of R

is a semisimple associative algebra, hence is completely reducible on 9Î.

Hence D3 is completely reducible by Theorem 18, p. 102 of [6]. Hence

X)(9I) acts completely reducibly on 91.

To show the converse, we suppose that Î)(9I) is completely reducible

acting on 91. Let

it = linear span of all [a, n],       a e 91, n g 9Î.

il is invariant under each D g D(9I) since [x,y]D=[xD,y]+[x,yD]

and 9Î is characteristic in 9Í (Lemma 2 of [10]). Hence 9I=ft©3 where 3

is D(9í)-invariant. If ae3, then [a, n]=a(Rn — Ln) eftn3=0 since

Rn—Ln g D(9I). Hence R is the linear span of all [a, n], a g Si, ne 9Î.

Then R=[R, 9c] = [[ft, 9Í], 9t] = - • • . Since £s9î, we must have R=0

and each n g 9Í commutes with each a g 91. Next let

$\x = linear span of all (x, z, y),       x, z g 91, y e 9Ï.

Then SKX is invariant under each D e î)(9l) since

(x, z, y)D = (xD, y, z) + (x, yD, z) + (x, y, zD).

Hence 91=^03! where 3i is D(9I)-invariant. If ze^, then (x, z,y) =

z[Lx, RJeSi 05^=0 since [Lx, Rv] g D(9T). Hence S\x is generated by

(x, z, y), y e 91, z g $\x, x g 91. Suppose that x g 3i along with y e 9Î,

zeS\x.   Then   (x, z,y) = (x,y, z)+{z, x,y) = (x,y, z).   If,   in   addition,
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v e Si^^i then (x, z,y)=(x,y, z)=0. Hence Ä, is generated by

(6) (x,z,y),      ye%z,xeRlt

and

(7) (x,z,y),      xe%i>z,yeRt,

We show 5^=0 by considering the Penico chain: 9t<0> = 9î, 9t<i+1>=

3I(3l<<>)ï+(5R<<>)ï for i>0. Each 5R<*> is an ideal in 91 and since 9t is nil-

potent, there exists a t such that 9l<(>=0 (Theorem 3 of [10]). It is readily

verified that each of (6) and (7) is in 9t<s> for each s, hence 5^ = 0. Since

91 is flexible, (y, z, x)= — (x, z,y)=0 for all y e 91, z, xe9I. Then

(x, y, z) = (x, z,y)—(z, x,y)=0 for all y e 9t, z, x e 91. Hence 91 £(L

Next, to show that 9l2=0, we suppose to the contrary that 9Î2^0.

Since 9t£<£, C=3 + 9l where 3 is as in (3). Also £ is 35(9I)-invariant

so that 35(91) acts completely reducibly on <£. Consider 9t=>9t2=>- • •=>

9îfc=0 (k>2) and note that since (£ is associative, each 9t¿ is a characteristic

ideal of (£. Let 2 be a 35(9I)-invariant complement of 9Í*-1 and we show

the existence of a derivation D of (£ which may be extended to a derivation

of 91 and is such that X is not invariant under D. The ideas are precisely

the same as those used in [4, p. 694]. Let r e 9ii_2 and define the linear

transformation DT of £ by

xDr = rx   if x e 91       and       xDr = 0   if x e 3-

Then Dr is a derivation of (f which can be extended to a derivation of 91

by letting S'+93 be annihilated, where S' and 93 are as in (3). (See the

proof of Theorem 7 of [10].) Since 9i*_15£0, there exists r e 9l*~2 such that

Dr^0. Hence there exists xeX such that Qj¿xDT=xr e Sit*-1. This

contradicts the 35(9I)-invariance of Ï and the result holds.

2. The alternative case. An algebra 91 is said to be alternative if the

identities

(8) x2y = x(xy),       yx2 = (yx)x

are satisfied in 9Í. Alternative algebras have been investigated by many

authors and they are discussed in detail in [9]. In particular, we use

many of the results of Schafer in [8]. One of the results appearing there

is that an alternative algebra over a field of characteristic 0 is semisimple

if and only if its derivation algebra is semisimple or 0. This result will be

used in what follows.

Proof of the alternative case. Assume that 9ÎÇ (£ and that 9l2=0.

Let 9I=9Î + S be a Wedderburn decomposition of 91. Then

(9) S = 3 © S'
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where 3 is the center of S and S' is the commutator subspace of <3

(Lemma 4 of [8]). As in the standard case we show that D(9l) = D1 + D2

where

Di = {Z)eD(9l);Z>:S-^S, Z>:9c-*0}
and

X>2 = {Z>eD(9I);Z>:S->0}

and that Dx and X)2 act completely reducibly on 91. The result then holds

as in the standard case.

Let D e î)(2l). Then D restricted to S may be extended to a derivation

D of 21 where

where xt, zt e9I (Theorem 5 of [8]). Since 9lç(£, xt, z¿ may be assumed

to be in S. Hence D g î)t and Z>:G->-G. Also any derivation of S can

be extended to an element of D1. Hence to show that Dx acts completely

reducibly on 91 it is enough to show that X)(S) acts this way on S. But

S semisimple implies that D(S) is semisimple or 0; hence D(S) acts

completely reducibly on (3 by a result of Weyl (p. 79 of [6]).

As in the standard case, if D e D(2l), then D restricted to 9Î (9Í is

characteristic by Lemma 6 of [8]) commutes with all Ra, a g 3, and con-

versely any such linear transformation of 9Í can be extended to an element

of î)2 by first extending it to a derivation of (£ = 3+ 91 which annihilates

3 and then to a derivation of 91 which annihilates S' by the argument in

the proof of Theorem 7 of [8]. The proof is then completed as in the stand-

ard case.

For the converse, we assume Î)(9I) acts completely reducibly on 91.

Let D = subspace of £>(2f) spanned by all derivations of 91 of the form

Rix.z-\ — Lix,z} — 3[Lx,Rz], xe9t, z g 91. As Schäfer has shown (p. 16 of

[8]), D is an ideal of D(9I). Let

S\ = linear span of all [y, [x, z]] — 3(x, y, z),       y, x g 91, z e 9Î.

Note that ft=9ID. Then R is D(9i)-invariant since ÄD(9T) = (9iD)T)(9I)c
2ID=ft. Hence 9I=tt©3 where 3 is T>(9I)-invariant. Now 3Dí=2ÍX)n

3D(9I)sftn3=0 implies that ft=9tî) = («©3)D=AI). Note that 91
alternative implies that each 9í¿ is an ideal of 91 where 9Î2 = 9Î • 9Í and

9íI+1=9í9li+9í¿9í for />2, and this chain must terminate at 0. We claim

R s 9Í¿ for each i. For let y e R, x e 91, z e 9Î. Then

[y, [x, ¿\\ - 3{x,y, z) = [y, [x, z]] + 3(y, x, z)

= y(xz — zx) — (xz — zx)y + 3(^)z — 3y(xz) e 9i2.

Hence ftç9î2. Now if ft^9í¿, then the same computation yields that

í\s9íí+1. Hence R=0 and 9Î s nucleus of 21 by Lemma 9 of [8]. Now
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Rn—Ln e 35(91) for each n e 91. Hence 91 ç £ by the same argument given

in the standard case. Finally 9l2=0 is now completed as in the standard

case.

Remark. The referee has noted that it is possible that the Theorem

holds if 91 is a /-algebra with commutators completely alternative such

that [Lx, LV] + [LX, Ry]+[RX, Ry] is a derivation for all x, y e 91 (see [2]).

91 is then a generalization of both standard and alternative algebras.

It can be verified that the conditions of the Theorem are sufficient for

35(91) to be completely reducible. The necessity of the conditions remains

an open question.
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