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AN EXTREMAL PROBLEM FOR POLYNOMIALS
WITH A PRESCRIBED ZERO

Q. I. RAHMAN AND FRANK STENGER!

ABSTRACT. Let 2, , denote the class of all polynomials p,(z) of
degree at most » in z which satisfy max,,_,|p.(2)| =1, and [p.(1)| =b,
0=<b<1. Let c€ (0, n], and set

y(c, n) = sup { min | p,.(z)l}.

PR €Py p ||2l=1—c/n

Upper estimates for u,(c, n) are obtained.

Let U denote the open unit disc in the complex z plane, T its boundary,
and let 2, , denote the class of all polynomials p,(z) of degree at most n
in z, satisfying max, p|p,(z)|=1 and p,(1)=0. The extremal problem in
question is to estimate

ue,n) = sup { min Ip,(2)),
PnePn o\|z|=1—c/n
where 0<c=n. This problem was mentioned by Professor Paul Erdés
during a lecture at the University of Montreal in July, 1971. He attributed
the problem to G. Halasz, of the Mathematical Institute of the Hungarian
Academy of Sciences; Erdos asked if there exists a constant ¢ such that
u(c, n)=1—¢, where ¢,—0 as n—oo.

It is easily seen that no such constant ¢ exists. In fact, if Pn € 2,0, then
also ¢, € £, , where ¢,(z)=z"p,(1/z), and by S. Bernstein’s theorem
[3, p. 45] on the derivative of a polynomial, |¢,(z)|<n for z € T. Hence it
follows that |z"~¢,(1/z)| <n for z € T and by the maximum principle, also
for all z € U. Replacing z by 1/z we find that

|97(2)] = n|z|™* forall|z] = 1.
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Consequently,
(1—c/m"
0t = et =[ [ g af
S —cmm—1=>0=cn™1—-01=c/n)"},

that is,

[Pa(1 = ¢/m)| = |(1 — ¢/n)"q,((1 — ¢/n)™)|
=1—-(Q—-¢mnm*—>1—e° asn— oo.

(€))

The inequality (1) provides a negative answer to the question raised by
Erdos and also gives an upper estimate for u(c, n). However, this estimate
is quite crude. The following theorem, which we shall prove, gives
““essentially” best possible upper estimates for u(c, n).

THEOREM 1. In the above notation,

@ wem<{I-Q0Q—cn){1+A—-cn)"} f0<c=s1,

and
{@n = e — @n — 1 — 1n)"}
@ Mo <o T e+ @n = el = 1ny)

The right-hand side of (2) is equal to ¢/2+0(c) as ¢—0; moreover, the
polynomial p, (z)=(1—2")/2 satisfies
| Imlin/ [Pa(2)] = IPa(1 = ¢[m)] = {1 — (1 — ¢c/n)"}[2 = ¢|2 + o(c)
z|=1=c/n
as ¢c—0. Consequently, the inequality (2) is the best possible in the limit
as c—0.
We find from (3) that u(c, n)=<1—1/ec+o(1/c) as c—oo. We shall show
that the function 1/(ec) cannot be replaced by one which approaches
zero more slowly with regards to order, as c—oc0. We prove

ifl<c=n.

THEOREM 2. Given
~
mJ—o
there exists a positive number A(1), depending only on A, such that whenever
c>A(A), then

a2
sin® u
)du

u2

log(l -

u(c, n) > exp(—4/c) > 1 — Ae.
For the proof of Theorem 1 we use two subsidiary results.

LEMMA 1 [1, THEOREM 4]. Let D be a circular domain in the z-plane,
and S an arbitrary set of points in the w-plane. If the polynomial p,, of degree



86 Q. I. RAHMAN AND FRANK STENGER [March

n satisfies p,(zZ)=w € S for all z € D, then for all z€ D and all { € D,

@) | o D) g
n n

Pa(2)

LemMa 2. If f(z) is analytic in U, where it satisfies | f(z)| =1, then for
0=<a<2mand 0=r,<r,<1,
@ f(re®) = (4 — B)/(A + B)
where
A=(1+r)1 —r){l +|f(re?l},
B=(1—r)(1 + r){l — |f(re™)}.
Proor oF LEMMA 2. It is well known that if f(z) is analytic in U,
where it satisfies | f(z)| <1, then

/@I = 1f@I) =11 — |z1*) forallzeU.
Hence
f”(d/dr) If(rfei“)21 dl < ["_1f/ e ar < [dr
n 1 —|f(re®)|

Sl — e Tl -1

Now if | f(r,e™)|> | f(ree™)|, we get

el e s/
1—-Gl/U—=6G)TU—-r)/1—-r
where G,=|f(r,e)|, k=1, 2, which readily gives the desired estimate of

| f (r,€*®)|. The inequality (4) is trivially true if | f (r,e™)| Z|f (r:e™)|.
ProOF OF THEOREM 1. Letp, € 2, o, 0<c=1, and let

min | p,(2)| = a.
|z|=1—¢/n

We wish to show that
a<{l—(1=cnm3{l+aA—c/n)".

Without loss of generality we may suppose that p,(z)#0 in U, and there-
fore

min |p,(z)] = min |[p,(2)| = a.
12| S1—c/n |z|=1—c/n

This implies that p, maps the circular domain D={z:|z|<1—c/n} onto a
set S which lies in the ring {w:a=|w|<1}. Hence by Lemma 1,

(1 = ¢/m)|pa@)l/n < (1 — a)[2
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for all |z|=1—¢/n, i.e.,

[pa((1 — ¢/n)z)] < 3(1 — a)n®(n — ¢) forall |z| = 1.

The same inequality holds for the polynomial z"*p,,((1—c/n)/z). Using
the maximum modulus principle, we therefore conclude that

2" pi((1 — ¢/n)[z)] £ 31 — a)n®/(n — ¢) forallze(U U T).
Replacmg z by (1 — ¢/n)/z we obtain

P2 < H{{ — @n¥(n — OHz/(L — c/m)}™* forall |z] Z 1 — c/n.
This implies that

0 = [p.(D)| =

1

>a— %(1 — a){n®/(n — )}t/(1 — c/n)}" " dt

=a-— %(1 —a){d —¢/m™ -1},

or a<{l—(1—c/n)"}/{14+(1—c[n)"}. This establishes the relation (2).

The above proof is valid for 0<c<n; however, for c>1, the estimate
Jjust obtained is not as good as the estimate (3). In order to prove (3) we
apply (4) with f(2)=p,(2), ry=1—c[n where 1<c=n, r,=1—1/n and a=
o* where |p,(z)| attains its minimum on the circle {z:|z|=1—1/n} at the
point z=(1—1/n)e’**. We get

i 2n — 1c—(2n —c)1 — 1/n)"
< -
.,.‘Ei‘i 1PA(2)| = Ipa((1 — c[n)e™ )] < @n— De + 2n — ol — 1)

which completes the proof of Theorem 1.
ProoF OF THEOREM 2. We consider the nonnegative trigonometric
polynomial

p—em+[ B0 dt]

1—c/n

t6) = (n + 1)2[n(n + 1) — 2{n cos 6 + (n — 1)cos 26 + - - -
+ 2 cos(n — 1)0 + cos n6}]

1 1 sin(n 4+ 1)0/2\?
=1 (n+ 1)2( sin /2 )

of degree n vanishing at 6=0. There exist (see [2, p. 117]) polynomials
Pn € 0 such that

) |Pa(e™)]* = 1(6).

Amongst the various polynomials p,, satisfying (5) there is one (except for
a constant factor of unit modulus) which does not vanish in U. If we
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denote it by p}, then for r<1 and —7 S @<

; 1 (7 i 1—1r°
*re'?)| = ex {—f log | pX(e®)|? dG’.
|pa(re®®)| Plas ) g [pn(e®)l 1= 2rcos@ — ¢) +7°

Thus
P31 — c/[n)e)| = exp(I (),
where
1 w/2 . d0
1) = 1 (en — 46 Tog P31
47 —z/2

1c® + (n® — cn)sin®(6 — 3¢)

It can be shown that for 0=0==/2,
1 (sin(n + 1)
(n+ D\ sinb
where D(u)=1—(sin®u)/u? and |y,|<5/(n+1)2. Hence

PAE = 1 ) = (1 + y)D((n + D)

n/2
19 = = - (en — 469 f "llog D(n + 10)
©) ~ 0
. 3c? + (n® — cn)sin®(6 — 3¢) +

where |6,|<10/cn if n=3. Since the right-hand side of (6) is decreased
when c?/4+ (n2—cn)sin?(0— ¢/2) is replaced by c?/4 we conclude that

Ops

w/2
IL(p) > — ﬂlc (n — %C)f_ /2I108 D((n + 1)0)| 46 — |6,

> _Ln—i f llog D(w)| du — 13,

mcn+1J-

from which the statement of Theorem 2 follows.

With reference to the problem of Halasz, it is natural to define a more
general class &, , of polynomials p,(z) which are of degree at most » in z,
satisfying max_.,|p,(z)|=1, and |p,(1)|=b where be[0,1), and to
estimate

woesm) = sup { min 15, (2}
Pn€Pn.p \|z|=1—c/n
Our proof of Theorem 1 applies with slight modification, to give the
following result.

THEOREM 1. Ifp, € P, ,, then for 0<c<n,

. 1—(1—=2b)1 —c/n)”
Izlglll-nc/nlpn(Z)l < 14+ —c/n)" )
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Furthermore, if c, € (0, n) is arbitrary, and if c,c<c=n, then
A 2 - - - »
|z]=1—¢/n A + {2nb(c — c,) + B}(1 — co/n)"
where A=(2n—c,)c, B=(2n—c)c,.

In analogy with the problem of Halasz, or the more general case just
considered, let &, , denote the class of all polynomials p,(z) of degree
at most » in z which satisfy max, ., Re p,(z)=1, and Re p,(1)=b, where
belo,1).

THEOREM 1”. Ifp, € F ,,, then

. 1 —(1 = 2b)1 — c/n)"
M o Repn2) <BO == i —agmr

Furthermore, for any fixed c, € (0, n) and for c,<c=n,

min Re p,(2)
(8) |z|=1—c/n on — _ eA o — _
<1+log{(1—(n o), e )/(1 2n — c)c, e e“)}
2n —c)ce+ et (2n — ¢))ce + 4
where A=B(c,).

SKETCH OF PROOF. The inequality (7) can be proved in the same way
as (2). If Re p,(2) attains its minimum on the circle {z:|z|=1—c¢,/n} at
z=(l1—c,/n)e™, then for ¢;<c=<n, we may apply Lemma 2 with f(z)=
exp{p,(2)}—1, n=1—c/n, ry;=1—c,/n and a=q,, to get

exp Re{p,((1 — ¢/n)e™) — 1} < (B — O)/(B + C)

where
B = (2n — ¢))c[l + exp{Re((1 — c,/n)e’™) — 1}],

C = (2n — c)ey[1 — exp{p,((1 — cy/m)e™) — 1}].

The inequality (8) now follows from this, in view of the definition of 4,

and since
min Re p,(z) £ Re p, (1 — c/[n)e’™).
|2|=1—c¢/n
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