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THE  ROLE  OF  ZERO  SETS IN THE SPECTRA
OF HYPONORMAL  OPERATORS1

C.   R.   PUTNAM

Abstract. A compact set in the complex plane is the spectrum

of a completely hyponormal operator if and only if the set has

positive density.

1. Introduction. A bounded operator T on a Hilbert space is said

to be hyponormal if T*T— 7T*^0, and completely hyponormal if there

exists no nontrivial reducing space on which it is normal. It was shown

in [5] that if T is completely hyponormal and if its spectrum, sp(J),

intersects an open disk in a nonempty set, then the (planar) measure of

the intersection is positive. It will be shown below that, conversely, if S

is any compact set of the plane having positive density, in the sense that

(1.1) S O N t¿ 0 => meas2(S n N) > 0,       N any open disk,

then there exists a completely hyponormal operator Tfor which S=s\o(T).

Thus,

Theorem 1. A necessary and sufficient condition that a compact set

S be the spectrum of a completely hyponormal operator is that (1.1) holds.

Consequently, sets of measure 0 play the same role for hyponormal

operators as the nowhere dense compact sets X for which C(X) = R(X)

play for subnormal operators; see [1].

As noted above, the necessity part of Theorem 1 was proved in [5],

so that only the proof of the sufficiency remains. This will be given in §4

as a consequence of Theorem 2 stated next, the proof of which will be

given in §3.

Theorem 2.    Let S be a subset of the plane satisfying

(1.2) S is compact   and   meas2(S)>0.

Then there exists a completely hyponormal operator M for which M*M—

MM* has rank 1 and sp(M) <= S.
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A certain result, given below as a lemma and the validity of which

remained problematic in [6], will be needed. (The author has since learned

that the lemma follows from some results of R. O. Davies [4]; see §2 be-

low.) Some terminology will first be given. Let a denote any closed set of

real numbers and let Sa denote the infinite closed strip SIZ = {z: Re(z) e a.}.

For each f, 0<;r<27r, let S(t, <x)=eitSa, the set Sa rotated about the

origin by the angle f.

Lemma. Let S be a set of the plane for which (1.2) holds. Then there

exists a (finite or infinite) sequence tx, t2, • ■ ■ , 0^tn<.2tT, and a sequence

of compact sets a.(t n) on the real line for which the closed set

(1.3) A = Q S(tn, a(r„))

satisfies

(1.4) A a S   and   meas2(/l) > 0.

In case each a(fn) is a closed interval, the set A is convex (and closed).

Thus the lemma states that any compact (hence, any measurable) set of

positive planar measure contains a "generalized" compact convex subset

of positive measure. It may be noted that the corresponding assertion

concerning the existence of generalized rectangles is false ; see [3].

2. Proof of the lemma. Choose an open rectangle R with sides parallel

to the coordinate axes and so that £■<= R. By choosing appropriate open

vertical half-planes {z: — oo<Re(z)<a} and {z:Z><Re(z)<oo} and a

corresponding pair of horizontal half-planes one can "erase" the set C—

R-. (Here C denotes the complex plane and R~ denotes the closure of R.)

Thus one may restrict attention to the set R—S, the complement of S

with respect to R. It is clearly sufficient to show that there exists a sequence

of open intervals ian,bn), where — oo<a„<è„<co, and real numbers

tn, where 0^f„<27r, together with corresponding open strips

(2.1) Sn = eil"{z:an<Reiz)<bn},

for which

(2.2) (R - S) c ([J S„)    and   meas^S - (lj S^j > 0.

The author is indebted to Professor R. O. Davies for informing him

that the above desired result, hence the lemma, is essentially contained

in Davies' paper [4]. In fact, it was shown there [loc. cit., p. 220] that if £

is any set of finite planar measure then there exists a planar measurable

set L composed of straight lines and satisfying E<=L and meas2(L—£)=0.

The proof of this last result depends on Lemma 6 of [4, p. 220]. A special
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case of that lemma will be needed in the present paper and will be formu-

lated as the following :

Lemma (*) [R. O. Davies]. Let R be an open rectangle ABB'A' with

horizontal sides AB and A'B', and let E be any planar measurable set con-

tained in R. Then, for any £>0, there exists a sequence of open parallelo-

grams {Pn}, n = 1, 2, • • • , contained in R and with two sides on AB and A'B'

for which

(2.3) £<=UPB   and   meas2(uP„-E) <£•
n \ n /

First, it may be noted that, in Lemma 6 of [4], the corresponding sets

R and Pn are all closed parallelograms. The formulation of Lemma (*)

in which R is an open rectangle and the Pn are open parallelograms is a

trivial modification and will be more convenient for our application below.

Next, let the rectangle R and the set E of Lemma (*) be identified

with the sets R and R—S occurring in the beginning of this section.

Further, for a given £>0, let each parallelogram Pn be extended to an

open strip Sn by simply removing its sides lying on AB and A'B' and

extending the other two sides indefinitely in both directions. If B=(jn Sn,

then, by (2.3),

R - S e= B   and   meas2(B n S) = measJ |J Pn - (R - S)\ < e.

Since meas2(5')>0 and since S=(S—B)^j(Sr\B), relation (2.2) now

follows by choosing e to be less than meas2(5).

3. Proof of Theorem 2. Since M can be replaced by cM where c=

const>0, it can be supposed that S is a subset of the closed unit disk.

Let T denote the unilateral shift operator, so that sp(r) is this disk and

let A satisfy (1.3) and (1.4) of the lemma. Next, note that T and A may

be identified with the corresponding symbols in Theorem 2 of [6, p. 702].

Actually, it was assumed there that s\o(T)r\A had positive density, a

condition not now assumed. Nevertheless, the proof given there [loc.

cit., p. 706, bottom] shows that there exists an orthogonal projection P

for which TP=PTP is hyponormal; in fact, TpTP-TvT%=P(T*T-

TT*)P. Further, sp(TP)c (sp(£)n^) and (sp(7/)n^)-sp(rP) is a set

of measure 0. (Here, T¡, as well as TQ below are regarded as operators

on the corresponding projections of the original Hilbert space.) Since

sp(T)t~\S=S, it is clear from (1.4) that sp(7» differs from A by a set of

measure 0. If TP is not already completely hyponormal one can choose

(cf. [6, p. 707]) a projection Q^P so that M=TQ = QTQ is completely

hyponormal, M*M—MM* has rank 1, and sp(M) differs from sp(Tp),
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hence from A, by a set of measure 0. But sp(A/) must have positive

density (necessity part of Theorem 1) and hence sp(M)cA (CS). This

proves Theorem 2.

4. Proof of sufficiency in Theorem 1. This follows easily by taking

direct sums of operators of the type M in Theorem 2. Thus, since S has

positive density, there exists a sequence of points {zn} belonging to S

and which are dense in S, and open disks Nn = {z:\z—zn|<rn} such that

each set SCiNn has positive measure. Then choose Mn as in Theorem 2

so that Mn is completely hyponormal, M*Mn — MnM* has rank 1 and

sp(Mn)cz(SnN^). Then 7 = 2© Mn is completely hyponormal and

sp(r) is the closure of the set Un sp(^n)í see [6, P- 703] for a similar

argument. Since the {zn} are dense in S it is clear that sp(T)=S.

Added in proof. It has recently been shown by R. W. Carey and J. D.

Pincus (Construction of seminormal operators with prescribed mosaic

(Preprint)), by other methods, that the operator occurring in the suffi-

ciency part of Theorem 1 above can be chosen so as to have a one-

dimensional self-commutator.
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