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SWITCHING SETS IN PG(3,q)

A.  BRUEN  AND R.  SILVERMAN

Abstract. In this note, we are mainly concerned with partial

spreads U, V of PGÇ}, q) which cover the same points and have no

line in common. Setting |t/| = | V\=t, we show that if r>^+l then

r|2:max(í¡f+2, 2q—2). Certain applications of this result to (0, 1)

matrices and to translation planes are then discussed.

1. Summary. Our purpose is to describe a new result (Theorem 3)

on the size of replaceable partial spreads in 2=F(J(3, q), the 3 dimensional

projective space over the finite field of order q=ps where/» is a prime and

s is a positive integer. The bound we obtain is "best possible" for q odd.

It also represents somewhat of a breakthrough in the combinatorial

theory of finite translation planes since, when applied to certain classes

of such planes, it leads to an improvement of a well-known bound due to

R. H. Brück [1] (see Theorem 4). Furthermore, our result has a purely

combinatorial interpretation in terms of (0, 1) matrices; this is discussed

in §5. Although we are dealing with very "modern" questions, our main

tool is a classical theorem in solid geometry, namely the regulus theorem

discussed below. By way of an example we shall also come across another

hardy perennial—the Schläffli double-six configuration. The proof in

outline of the main result is a pleasant mixture of geometry and combin-

atorics. In order to exhibit this, we have attempted to keep this note

accessible and self-contained. Thus we discuss below some geometrical

background. We should mention that Theorem 3 can also be stated in

purely affine or vector space language. How it can be proved, however,

without reverting to the projective situation is far from clear.

2. Background in 2. By a partial spread U of 2=F(7(3, q) we mean

any nonempty family of pairwise skew lines of 2. If every point P of

2 lies on some line of U we then refer to U as a full spread or, simply,

a spread of 2. Two partial spreads U, V of 2 are said to cover the same

points provided the following holds : A point F of 2 lies on a line of U

if and only if P lies on a line of V. A transversal of the partial spread
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X is a line of 2 meeting each line of X in exactly one point. Our main

tool is the following result (see [3, p. 221]).

Theorem 1 (Regulus Theorem). Let a, b, c be 3 distinct and pairwise

skew lines ofL, and let a , b', c' be 3 distinct transversals of the partial

spread {a, b, c}. Then each transversal of {a, b, c} intersects each trans-

versal of {a', b', c'}.

This theorem has some important consequences. By a regulus we mean

the partial spread consisting of all the transversals to 3 distinct and pair-

wise skew lines. From Theorem 1 we can show that 3 skew lines are

contained in a unique regulus R. Moreover there is then also determined

another (unique) regulus R' having no lines in common with R but such

that R and R' cover the same points. R'(R) is called the opposite regulus

of R(R') respectively. It follows also that a line which intersects 3 or more

lines of a regulus X intersects all lines of X and is in fact a line of the oppo-

site regulus X'. We note that a regulus contains exactly q+l lines. Next,

let U, V be partial spreads, each containing exactly 6 distinct lines with

[/={MJ, V={Vi), l^/'^6. Suppose that:

(1) The line uk is skew to vk, l:_rc_6.

(2) Each u¡ intersects each v¡ provided i^j, 1 _?/,_/^6.

We then refer to two such families U, F of 6 pairwise skew lines as a

double-six configuration. We refer to Hirschfeld [5] for a proof of the

following.

Theorem 2.    A double-six configuration exists in PG(3, 4).

Remark. We can think of 2 as being based on a 4-dimensional

vector space V= Vt(q), and analogous definitions for partial spread,

spread, etc., can be phrased in terms of the subspaces of V.

3. The main result. We make repeated use of Theorem 1 and its

consequences in proving the following.

Theorem 3. Let U and V be partial spreads o/2=FG(3, q) which cover

the same points. Assume that U and V have no lines in common. Then we

have the following:

(1) \U\ = \V\ = t,say.
(2) t^.q+1, and equality holds if and only if U is a regulus and V is its

opposite regulus.

(3) Ift>q+l then t^max(q+2,2q-2).
(4) Ifq>3 is odd, the bound above in (3) is best possible being attained

by constructions due to D. A. Foulser in [4].

(5) Ifq = 2, |£/|^4 and there exist examples with |£/|=4.

(6) Ifq=4, i^6 andift = 6 then U, V must form a double-six configur-

ation. Moreover, from Theorem 2, such a configuration does exist.
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Outline of proof. Parts (1) and (2) are immediate from the defi-

nitions. Let us concentrate on part (3). There are two cases to consider.

The first case is when any 3 lines of U have at most 3 transversals in V,

and, at the same time, each 3 lines of V have at most 3 transversals in U.

In the second case we can assume that some 3 lines of U (or V), say the

lines M,, u2, u3 of U, have at least 4 transversals vx, v2, v3, vt in V. One

can dispose of the first case by an ad hoc argument which is outlined in

the appendix (§6). We focus on the second case. Let there be exactly ß

lines vx, v2, v3, i>4, • • • , vß in V which are transversals to {ux, u2, u3).

Since a regulus contains exactly q+l lines, we have 4_/3^^+l. Suppose

there are exactly a transversals ux, u2, u3, • ■ ■ ,ux to the set {vx, v2, v3}.

Actually, by the regulus theorem, each line w¿ will meet each line v¡,

12=/?Sa, 1 ̂ y'_/3. Every point on the ß lines v¡, 1 ̂ j^ß, must be covered

by a line of U. Each such line v¡ has exactly q+l points, and the a lines

ux, u2, u3, • • • , wa account for just a of these points. Also, by the regulus

theorem, a line x of U meeting more than 2 of these lines v¡ meets all of

them (in particular, x then meets vx, v2, v3). Thus we obtain

|t/|^a +|/%+ 1 -a).

Similarly

IKj >ß + Mq+ i - ß)-

For the sake of argument we can take cn^ß. By assumption ß^4. Thus

certainly ß>2. Therefore \U\ciß+2*ß(q+\ — ß). An examination of this

quadratic, again using the fact that /3_4, shows that we are done unless

ß^q. Since the number of lines in a regulus is^ + 1, we now haveq^ß^q+

1. Recall that any line of 2 meeting more than 2 of the ß lines v¡, 1 ̂ j^ß,

meets all of them and, in particular, meets the lines vx, v2, v3. Since

y.^ß-^q+1 <\U\ there exists a line u of U meeting at most 2 of the ß lines

Vf, 1 ̂ j-^ß. Since U and V have no lines in common, u is not also in V.

Now U and V cover the same points. Thus, in order to cover the points

ofu, we must have \V\^ß+q— l^2q— 1, and we are done.

Comment. From the above, it would appear that rather more can

perhaps be said from a structural point of view, especially in connection

with the nets in [4]. We hope to pursue this further at a future date.

4. Translation nets. The work in the previous section is valid in

PG(3, q) where q is any prime power. In this section it is assumed that q

is a prime, actually an odd prime. (For a brief discussion concerning

the reason for making this assumption on q we refer to §6, the appendix.)

To resume then, we are working in Y.=PG(3,p) with p an odd prime.

Equivalently we can think of W=Vi(p), the underlying 4-dimensional

vector space over GF(p). It is then well known that any translation plane
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of order p2 is representable as a spread of 2 (or of W) and conversely

(see [2]). We can apply Theorem 3 to obtain the following result.

Theorem 4. Let N be a net of order n=p2 withp an odd prime. Assume

that the deficiency of N is less than 2nll2—2. Then N is embeddable in at

most 2 translation planes -ax, n2. If trx, tr2 exist, then ttx is obtained by

deriving n2, and vice versa.

Outline of proof. We refer to [2] for a more detailed analysis.

Let nx be a translation plane containing N. Choose a point O to be the

origin of ttx. Since/) —3, N contains 3 parallel classes which we may use

to assign (Hall) coordinates to the points of irx, using O as the origin of

coordinates. Since -nx is a translation plane, we can then establish a

bijection between the points of nx and the vectors of W= Vt(p) and in this

manner represent w1 as a spread of W (or of lZ=PG(3,p)). Let 7r2 be a

different translation plane containing N. Let / be a line of 7r2 through O

such that / is not a line of N. We have already assigned a unique vector of

W to each point of 7r2. Since 7r2 is also a translation plane, the points of

/ yield an additive subset in W. This additive subset must actually be a

subspace of W because p is a prime. Denote by U, V those lines of wx,

772 respectively which pass through O and are not lines of N. We can

simultaneously think of U, Fas partial spreads in W (and in 2). Throwing

out any lines common to the 2 partial spreads, we arrive at a stage where

we can apply Theorem 3. Since we are assuming that the deficiency of

N is less than 2nll2—2 we conclude that U is a regulus, V is its opposite

regulus and, therefore (see [2]), 7r2 is obtained by deriving ttx.

5. Combinatorial applications. Let A=(aa) be a (0, 1) matrix of

size mxn, that is, A is an m X n matrix all of whose entries are either zero

or one. We say that A is a regulus matrix if A contains no 4 x 4 submatrix

having exactly 15 ones. More precisely, given any set {xx, x2, x3, xt} of

4 distinct (but not necessarily consecutive) integers with l^xx<x2<x3<

Xi^m and another such set {yx,y2,y3,yi}, l^J;i<j2<J's-<74='1. then,

of the sixteen matrix entries ag _„ (l^/,y^4) either all are ones or at

least two are zeros. Note the connection between this definition and

Theorem 1, whence the term regulus matrix. An argument similar to

that of Theorem 3 then establishes the following result.

Theorem 5. Let A denote a regulus matrix of size mxn. Let k denote

some given positive integer. Assume that each row and each column of A

contains exactly k ones. Then the following hold.

(1) w=« = /_rc. If t=k, then all entries in A are 1.

(2) Ift^k then i_max(A:+l, 2k—4). Moreover for k=q+l, with q

an odd prime power, this bound is sharp.
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Comment. The examples of Foulser (see part (4) of Theorem 3)

with k=q+\ and q an odd prime power show that the bound is sharp.

However, other examples (to show the bound is sharp) are constructible

with k^q+1, and hopefully, will be developed elsewhere. Also concerning

the notion of a regulus matrix, we mention a paper of H. J. Ryser [6]

where (0, 1) matrices which do not contain certain kinds of configurations

are discussed.

6. Appendix. We want to make some brief concluding remarks,

as follows.

A. Concerning the restriction on q in §4, an analysis of the proof of

Theorem 4 shows that a slightly more general result is available. Namely,

one can drop the assumption that q=p providing one assumes that ttx

and 772, of order q2 each have GFiq) included in its kernel. The argument

then goes through in this more general case, mutatis mutandis.

B. In the proof of the main result (Theorem 3, part (3)) we did not

discuss the first case, namely the case when any 3 lines of U have at most

3 transversals in V (and, at the same time, each 3 lines of F have at most

3 transversals in U). We argue here as follows. For each 3-element subset

F of the lines of U, we can count the number «(F) of lines of V which are

transversals to E. By hypothesis, n(E)^3. Thus 2e n(F)^3(i), the

summation being over the (3) subsets F (recall that t = \U\ = \V\). On the

other hand, each line of V meets exactly q+l lines of U, so that

ZEniE) = i"t1)t. Hence Ct1)^^). From this, by straightforward

computation, we obtain the desired result, namely that t^.2q — 2.
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