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NOTE  ON  QUASIFIBRATIONS AND  MANIFOLDS

RALPH STÖCKER

Abstract. Let £ be a closed C°°-manifold which is the total

space of a quasifibration over S" with fibre Sk. Then, in many cases,

E has the homotopy type of an orthogonal S'-bundle over S".

The proof includes a classification theorem for certain quasi-

fibrations which has further applications.

1. Introduction. In [3], examples are given of the following phe-

nomena: There exist quasifibrations over Sn with fibre Sk whose total

spaces have the homotopy type of closed Cœ-manifolds but not the homo-

topy type of any S*-bundle over Sn. In fact, for k=2 and 4<«^0 mod 4,

the complex SnVS2Ven+2 with the top cell attached by [*", i2]+i2 ° a has

the desired properties provided that a e 7t„+1(S2), ol^O, and some iterated

suspension F*va=0. It quasifibers over Sn with fibre S2 (by Theorem III

of [8]), it has the homotopy type of a closed C^-manifold (by Browder-

Novikov theory, for Poincaré duality holds and the Spivak normal

spherical fibration is trivial since £lVa=0) and it does not have the homo-

topy type of any 52-bundle over Sn (for this would imply oc=0; see [3]

for details). Thus S*-quasifibrations over Sn lead to new examples of

closed C"-manifolds, at least if k=2 and for some values of«. One may

ask whether or not the same phenomena occurs for other values of k

and n. The answer is "no" in the stable range.

Theorem 1. Let p:E—*Sn be a quasifibration with fibre ~5* and

k^.n; then E has the homotopy type of a closed Cx-manifold iff it has the

homotopy type of an orthogonal Sk-bundle over S".

This follows from Theorem 6 below and the fact that if k^.n there

exists a homotopy section s:Sn-*E. We only consider quasifibrations

which admit homotopy sections (as the examples above do) and whose

total spaces have the homotopy type of a CW-complex. The main step

is to classify them, as follows:

Two maps p:E-*B and p':E'-*B are called equivalent, p~p', if there

exists a homotopy equivalence h:E-*E' such that/?7<~/?; observe that
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this implies fibre homotopy equivalence ifp and/?' are fibrations. Given

a.eirn+h^liSk), n, kit!, let Xx=SnvSk\Jen+k with the top cell attached

by [i",í1]tí1»«, and let p0C:X0C-^Sn be a map such that pa\SnvSk is

homotopic to the projection SnwSk~^Sn. The equivalence class of pa is

uniquely determined by a. Let ä be the coset of a modulo the subgroup

which consists of all Whitehead products [p, 1] etrn+k_x(Sk) with

P 6 w„(S*).

Theorem 2. (a) The equivalence class of px contains a quasifibration

p:E^*Sn  with p~1(*)=Sk  which  admits a homotopy section,   (b)  Let

«> ß £"n+k-i(Sk); thenpx~pß iffä=ß or â = (-(-l) ° ß)   .

Corollary. TrQ(Xx)=in ° 7ra(Sn) + ik ° Tra(Sk) if q>0, and composition

with tn and i" is injective.

If n>k + l, (a) is contained in Theorem III of [8]; the general case is

proved in §2 below, (b) follows from the definition of equivalence by a

standard calculation which is left to the reader (recall n, rV_2).

Let p : E-+Sn be a quasifibration with fibre ~Sk which admits a homo-

topy section. Let Cip)<^Trn+k_xiSk) be the set of all "brace products"

of/? (compare [4] and §2 below).

Theorem 3. If a e C(/?), then C(/?) is the union of the cosets ä and

(-(-l)oa)-, andp~px.

This completes the classification of quasifibrations over Sn with fibre

CiS* which admit homotopy sections up to equivalence: The set of equiv-

alence classes is in 1-1 correspondence with the factor set of 7rn+k_xiSk)

obtained by identifying a, ß e itn+k_xiSk) if 5.=ß or ä=(— (— 1) ° ß)~.

The classification by homotopy type is as follows:

Theorem 4. Let n^k or let n=k be even; then Xa~Xß iff ä=±ß

or 5 = (±(— 1) o ß) . Let n=k be odd; then Xx~Xß iff there exists an

integer m relatively prime to the order of a. such that mä=ß.

The case n^k is similar to the proof of (b) of Theorem 2 and is left to

the reader; the case n=k is discussed in full detail in [6].

Now let us return to the problem mentioned at the beginning. A quasi-

fibration p:E^-Sn is called smoothable if E has the homotopy type of a

closed C^-manifold M; it is called sectionally smoothable if M and a

homotopy equivalence h:E-^-M exist such that, for some homotopy

section s:S"->-E, hs:Sn-»M is homotopic to a smooth embedding.

Theorem 5. A quasifibration over Sn with fibre ~S* which admits a

homotopy section is sectionally smoothable iff it is equivalent to an orthog-

onal bundle.
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Theorem 6. Let n^2k—3 ; then a quasifibration over Sn with fibre £¿S*

which admits a homotopy section is smoothable iff it is equivalent to an

orthogonal bundle.

Theorem 6 follows from Theorem 5 and Haefliger's embedding theorem

[2]. Theorems 2, 3 and 5 are proved in §2. Some further applications are

given in §3.

2. Proofs. We further assume n, k^2. Let u,q:Sn~1xSk->Sk be

maps such that q is the projection qix,y)=y and m|5"'~1v5'í:=^|5''í~1v5'*:.

Let Eu be obtained from Sk by attaching Dn x Sk by u. Let % ■ iDn,Sn-1)-*

iSn, *) and <f>:DnxSk^Eu be identification maps. Let pu:Eu-^Sn be

pu(Sk)=* and pu<f>ix,y)=xix) if x e Dn, y e Sk. By Theorem (1.8) of

[5], pu is a quasifibration with fibre Sk. The cross-section Sn—>-Eu, given

by jcr-»^(^_1(x), *), and the inclusion Sk<= Eu define an imbedding SnvSk<^

Eu with complement a («+/c)-cell. Thus Eu=SnvSkVen+k and pu\SnVSk

equals the projection SnvSk^-Sn. We are going to calculate the attaching

map of en+k.

Let co e irniDn, S71'1) be the class of the identity map, and let

co x 1 e 7Tn+kiDn x Sk, W)   with W = Dn x * u S"-1 x Sk

be the cross product of ft? and 1 e nkiSk), as defined in §5 of [1]. Define a

diagram of maps

W- S"-1 x SklSn~l x *

SnV Sk- sk +
n.n

x Sk

Sk V sn~^k~1

as follows, f is the identification map, cp its extension to W such that

cpiDnx *)=*. ü is induced by u, q is the restriction of q, and u' is the ex-

tension of « such that u\x, *) = %(*) if x e Dn. h' is a map such that h\y) =

y>i*,y) if y e Sk, and h'lS"*"-1 represents the element cp^dicox 1). By an

easy homology argument, h! is a homotopy equivalence; define h to be a

homotopy inverse such that hy>i*,y)=y if y e Sk. Then h^cp^dicox T) =

tn+ft-is the class of the inclusion sn+k~1^-SkySn+k-1.

The class of the attaching map of the cell en+k<=Eu is m'+9(o?x 1);

from (5.8) of [1] one easily gets

u'+dico X 1) = [in, ik] + ik °q'*u'*diw X 1).

Now suppose u is defined by the equation u= (1 ,f)hip, where/: Sn+k~1-»Sk
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represents a given element a e Tn+k_xiSk). Then

q'^dico X 1) = w*9?*9(ft? X 1) = il,f)^cp^dico X 1)

= Min+k~1) = a;

thus the class of the attaching map of en+k is [tn, ik]+ik ° a. This shows

that the quasifibration pu belongs to the equivalence class of pa of §1

and proves (a) of Theorem 2.

We next prove Theorem 3. Let p:E—>Sn be a quasifibration with fibre

~Sk which admits a homotopy section. If i':F=/?_1(*)—>-F denotes the

inclusion, there is a split exact sequence iq>0)

0 —► 7Ta(F) ±» 77a(F) ^> nqiS») -^ 0.

Define C(/?)<=7r„+J._1(5*:) as follows: Choose a homotopy section s:Sn—>E

and a homotopy equivalence b : Sk-*F. Denote by o e 7rK(F) and ß e irk(F)

the homotopy class of s and b, respectively. Since the Whitehead product

[<r, t'tiß)] £ TTrn-i-i(F) is mapped to 0 under/?„., the element

cip; s, b) = -«¡Vi», /*(/?)] e 77^^(5*)

is well defined. Let C(/?) be the set of all c(/?; s, b), with j and b varying.

If V:Sk-*Fis a homotopy equivalence, b'~b or b'~bd, where d:Sk-+Sk

represents —1. In the first case cip; s, b')=cip; s, b), in the second

cip; s, b') = -c/^VK - U(ß)] = -(-1) ° c(p; s, b).

If s':S"--E is a homotopy section too, its homotopy class has the form

o-+/.'*£*(p) for some p e Tr„(Sk), by the exact sequence above. Conversely,

given p, each map representing o+i+b^ip) is a homotopy section. Now

clearly the calculation

cip; s', b) = —b?i?[o + i*b*ip), i*iß)] = c(p; s, b) - [p, 1]

proves the first part of Theorem 3.

Let oc=c(p;s, b) e C(p), and let f:SnVSk-*E be the map which is s

on Sn and b on 5*. Since

/,([!», tfe] + t* o a) = [ff, /„(/?)] + f,*,f>)-0,

/extends to a map Xx—>-E (recall the definition of Xx in §1). By the exact

sequence above and the corollary of Theorem 2, any extension X^-^-E off

is a weak homotopy equivalence, hence a homotopy equivalence since

we assume E to have the homotopy type of a CW-complex. By standard

obstruction theory, an extension g:Xx-+E off exists such that/?g~/?a.

Hence p~pa, in the sense of §1, which completes the proof of Theorem 3.

Lemma 1. Let p:E^-Sn be an orthogonal Sk-bundle over Sn which

admits a cross-section, and suppose ô e trn-XiSOik)) maps to a characteristic
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element of p in trn_xiSOik+l)). Then /(ó) e Cip), with J:irn_xiSOik))-+

Trn+k_xiSk) the Hopf-Whitehead homomorphism.

Proof. Let /: S"'1^SOik+1) with /(*)= 1 represent the image of ô,

and let u:Sn~1xSk^>-Sk be the adjoint map uix,y)=fix)iy). Then u=q

on Sn~1vSk, and therefore pu:Eu-^-Sn is defined and is an orthogonal

S^-bundle over Sn isomorphic to p:E^-Sn (compare §3 of [6]). As is

well known, f=uf1h'\Sn+k~1 represents F(f5). Then (1 ,f)hy~u rel Sn~l X *

and this yields /?,~/?li~'/?^(ä), by calculating u'+dicoxl) as in the proof

of Theorem 2. Now the lemma follows from Theorems 2 and 3.

Remark. Since ((-1) °J(ô))-=(-J(ô)y~, by (2.2) of [6], the coset

C(p) = (J(ô))~~ is (up to an inclusion) just the X(p) of [6].

Proof of Theorem 5. Let a e Trn+k_1(Sk), «,rV_2, and suppose

there exists a closed C^-manifold M and a homotopy equivalence /i:Afa—>-

M such that the element h^ (in) e trn(M) is represented by a smoothly

imbedded sphere Sn^M.

Lemma 2. Then there exists an orthogonal Sk-bundle p:E—>Sn such

that P'^-'Pol-

This of course implies Theorem 5.

Proof of Lemma 2. Let v be the normal disc bundle of Sn in M

with characteristic element ô e -rrn_x(SO(k)). Its total space may be

identified with the closure Ü of an open tubular neighborhood U of Sn

in M. Let q:M^-M\(M—U) be the projection onto the Thorn space

M\(M— U) of v. By Lemma 1 of [7] there exists a homotopy equivalence

s:Ml(M-U)^SkVen+k, where the cell en+k is attached by J(ô). Thus

we get a map f=sqh:Xx-+SkKJen+k which we may assume to be cellular.

Let g:SnvSk^Sk be the map defined by /. Since /,:Äw.i(JT>+

Hn+k(Sk\Jen+k) is an isomorphism

g* ( [*", ñ + «fc ° a) = eJ(è)    with e = ± 1.

Furthermore, as will be shown below, g*(tfe) = e'=±l. Hence

g*(V\ ñ + i* ° a) = le'gtin, 1] + is') o x,

which together with the first equation implies (J(ee'ô)Y~=(e'(e') ° ct)~.

Thus if p:E—>S" is the orthogonal 5fc-bundle over Sn whose characteristic

element is the image of ee'ô, we get p~pa by Lemma 1 and Theorems 2

and 3.
Let Jf be the natural homomorphism from homotopy to homology

groups. To prove g^(ik)= ±1 it is sufficient to show thatf^.^e(vk) generates

Hk(Y). This, since 5 is a homotopy equivalence and by excision, is equiva-

lent to the statement that j^h^J^^) generates Hk(M, M—U) with

j:(M, 0)-s-(Af, M—U) the inclusion. Let w e Hn+kiXa) be a generator,
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and let v e Hn(Xx) be dual to JC(in) e Hn(Xx); thus the Kronecker

product (Jf(in), v)=l. Then, as follows from the cell decomposition

of Xx, the cap product vt^w=±3f(ik). Hence yC\z=±hil.2tf'(ik), ifze

Hn+k(M) is a generator and if y e Hn(M) is dual to h^J?(tn) e HniM).

Therefore we have to prove that j^iyCiz) generates HkiM, M—U). By

excision, this is equivalent to the following: If z generates Hn+kiÜ, dU)

and if i: 0^-M is the inclusion, then i*iy)C\z' generates HkiD, dU). This

is true by Lefschetz duality, since i*iy) generates //*(£/).

3. Further applications. First, from the cell decomposition of Xx

and the Corollary of Theorem 2, we get the following examples, general-

izing Theorem (2.10) of [3]:

Theorem 7. Let a g nn+k_1iSk), n,k^.2. If n=k is even, suppose

the Hopf invariant //(a) = 0. Then Xx and S" x Sk have isomorphic homotopy

groups and integral cohomology rings, but are of different homotopy type

ifÖLjLO.

The next theorems concern the connection between homotopy type

and fibre homotopy type. Instead of Theorems 2 and 3 one may use

[9] (and Theorem 4) to prove them ; but this is too difficult a way to get the

results below, since it includes a deep theorem of G. W. Whitehead

(Theorem (3.2) of [10], as corrected in [11]). Observe that our proofs use

only elementary homotopy constructions.

The difficult point in Theorems 2 and 3 is the calculation of the auto-

morphism ou-»(—l)°a of irn+k_xiSk). In the special case k=2, w_2,

this automorphism is the identity, which implies

Theorem 8. Fibrations which admit cross-sections, with fibre a 2-sphere

and with base any sphere, are fibre homotopically equivalent, if their total

spaces are of the same homotopy type.

This fails to be true if cross-sections do not exist.

The fibrations of Theorem 8 are interesting for the following reason.

Let p:E^-Sn be a S^-fibration with cross-section which is not trivial

(in the sense of fibre homotopy type). Then p is not locally trivial if

/j_3. For otherwise its structure group could be reduced from Top(S2)

to 0(2) contradicting irn_1(O(2)) = 0 if w_3 (compare the proof of

Theorem (2.6) of [3]). The lowest dimensional example of such a fibration,

whose fibre homotopy type does not contain any locally trivial fibration,

occurs if n = 3: It is px with a the generator of ni(S2)=Z2. Its total space

Xx is a 1-connected 5-dimensional Poincaré duality space which does not

have the homotopy type of a closed C°°-manifold (compare [3]; this does

not follow from our results).
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Let p:E-+Sn be a fibration with fibre ~S* which admits a cross-

section. Let/?m be induced from/? by a map S"—>-Sn of degree m. If a e C(p),

then ma e C(pm), as easily follows from the definition of C(p). Hence we

get, from Theorems 2, 3, 4,

Theorem 9. Let p:E-^-Sn, /?': F'—►S" be fibrations which admit cross-

sections with fibre ~S*. Then, ifE~E'', p is induced from p (up to fibre

homotopy equivalence) by some map Sn—>Sn.

Corollaries, (a) If E has the homotopy type of an orthogonal bundle,

then p has the fibre homotopy type of an orthogonal bundle.

(b) IfE~Sn X Sk, then p is trivial (in the sense of fibre homotopy type).
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