A FINITELY GENERATED RESIDUALLY FINITE GROUP WITH AN UNSOLVABLE WORD PROBLEM

STEPHEN MESKIN

Abstract

The group described in the title is obtained as a quotient of a center-by-metabelian group constructed by P. Hall.

It is well known that a residually finite group which is finitely presented has a solvable word problem (V. H. Dyson [1], A. W. Mostowski [6]). It is also known (see the last sentence in V. H. Dyson [1]) although perhaps not well enough (see W. Magnus [5, p. 307]) that a residually finite group which is only finitely generated may have an unsolvable word problem. Herein we exhibit such a group which moreover is soluble, indeed it is center-by-metabelian. This is in some sense a minimal soluble example since all finitely generated metabelian groups have a solvable word problem. (This is an easy consequence of the fact that finitely generated free metabelian groups satisfy the maximal condition on normal subgroups (P. Hall [2]) and thus any finitely generated metabelian group can be almost finitely presented in the sense of Mostowski [6] and is residually finite (P . Hall [3]).)

Credit must be given to Peter Neumann who pointed out the appropriate example to be modified.

Our example uses a recursive function f with a nonrecursive range in a manner similar to the way Higman [5] exhibited a finitely presented group with an unsolvable word problem.

Let G be the center-by-metabelian group constructed by P. Hall in ([2, p. 434]). In the notation of P. Hall, G is generated by a and b and defined by

$$
\begin{aligned}
{\left[b_{i}, b_{j}, b_{k}\right] } & =1 & & \text { where } b_{i}=a^{-i} b a^{i}, i, j, k=0, \pm 1, \cdots \\
c_{i j} & =c_{i+k, j+k} & & \text { where } c_{i j}=\left[b_{j}, b_{i}\right], j>i, i, j, k=0, \pm 1, \cdots
\end{aligned}
$$

The center C of G is free abelian with basis

$$
d_{1}, d_{2}, \cdots \quad \text { where } d_{r}=c_{i, i+r}, r=1,2, \cdots, i=0, \pm 1, \cdots
$$

[^0]Let N be the subgroup of G generated by $\left\{d_{f(n)}^{f(n)!} \mid n=0,1, \cdots\right\}$. Clearly N is normal in G and a presentation of G / N is obtained from the presentation of G above by adding the relations

$$
d_{f(n)}^{f(n)!}=1, \quad n=0,1,2, \cdots
$$

Since f is recursive G / N is recursively presented. On the other hand one cannot decide for an arbitrary integer n whether or not $n \in$ range f. So one cannot decide whether or not $d_{n}^{n!}=1$ in G / N, i.e. G / N has an unsolvable word problem.

It only remains to show that G / N is residually finite. Since C / N is a direct sum of cycles it is clear that $N=\bigcap_{m=1}^{\infty} C^{m} N$ and so it suffices to show that for any $m, G / C^{m} N$ is residually finite. However m divides $r!$ for all but a finite number of integers r thus $C^{m} N / C^{m}$ is finite and so it suffices to show that G / C^{m} is residually finite.

To see that G / C^{m} is residually finite we let R_{k} be the normal subgroup of G generated by $a^{2 k+1}$. Then $G / R_{k} C^{m}$ can be constructed in a manner analogous to the way P. Hall constructed G.

We define B to be the group generated by the elements $\beta_{0}, \beta_{1}, \cdots, \beta_{2 k}$ subject to the following defining relations.

$$
\begin{equation*}
\left[\beta_{i}, \beta_{j}, \beta_{k}\right]=1, \quad i, j, k=0,1, \cdots, 2 k \tag{i}
\end{equation*}
$$

This makes B nilpotent of class 2 and B^{\prime} free abelian with basis

$$
\begin{array}{ll}
\gamma_{i j}=\left[\beta_{j}, \beta_{i}\right], & j-i \equiv 1,2, \cdots, k \bmod 2 k+1 \\
\gamma_{i j}=\gamma_{s t} & \text { whenever } j-i \equiv t-s \bmod 2 k+1 \tag{ii}
\end{array}
$$

Now \boldsymbol{B}^{\prime} has as a basis

$$
\begin{array}{rlr}
& \delta_{r}=\gamma_{i, i+r}, & r=1,2, \cdots, k, \quad i=0,1, \cdots, 2 k \\
& & (i+r \text { is taken mod } 2 k+1) . \\
\text { (iii) } \quad & \delta_{r}^{m}=1, & r=1,2, \cdots, k .
\end{array}
$$

This gives B^{\prime} exponent m.
Clearly the map $\beta_{i} \rightarrow \beta_{i+1}(i+1$ is taken $\bmod 2 k+1)$ is an automorphism of B of order $2 k+1$. It is easy to see that $G / R_{k} C^{m}$ is the extension of B by this automorphism. It may be defined as the group generated by α and $\beta=\beta_{0}$ with the above defining relations and

$$
\alpha^{2 k+1}=1, \quad \alpha^{-1} \beta_{i} \alpha=\beta_{i+1}, \quad i=0,1, \cdots, 2 k-1 .
$$

Now it is clear for any number of reasons that $G / R_{k} C^{m}$ is residually finite-for example it is polycyclic. Furthermore if $g \notin C^{m}$ then g can be written as a product of a power of a and a finite number of b_{i} 's and
d_{r} 's. Thus there is a k large enough so that $g \notin R_{k} C^{m}$ and it follows that G / C^{m} is residually finite.

References

1. V. H. Dyson, The word problem and residually finite groups, Notices Amer. Math. Soc. 11 (1964), 743, Abstract 616-7.
2. P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419-436. MR 17, 344.
3. -_, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622. MR 22 \#1618.
4. G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A 262 (1961), 455-475. MR 24 \#A152.
5. W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305-316. MR 39 \#2865.
6. A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123-135. MR 37 \#292.

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268

[^0]: Received by the editors March 12, 1973.
 AMS (MOS) subject classifications (1970). Primary 20E25, 20F10; Secondary 20E15.

 Key words and phrases. Finitely generated, residually finite, unsolvable word problem, center-by-metabelian.

