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SHORTER  NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

ON A  CLASS  OF ANALYTIC  FUNCTIONS

NOBUYUKI  SUITA

Abstract. We show that the class (£0 of analytic functions /

in a plane region O. ^ 0Aa vanishing at z0 e O. and such that 1//

omits a set of values of area >w is not compact. Here 0AB denotes

the class of Riemann surfaces which have no nonconstant bounded

analytic functions. We remark that the extremal functions maxi-

mizing |/'(z0)| in Co coincide with linear transformations w/(l—cw)

of those for the same problem in the class 230 consisting of functions

/such that/(z0)=0 and |/(z)|^l, i.e. so-called Ahlfors functions.

Here 1/c is an omitted value of the Ahlfors function.

Under the notations in the above abstract Ahlfors and Beurling [1]

stated that the classes 230 and (E0 are both compact and proved that the

maxima of |/'(z0)| in 230 and Œ0 are equal. However, we can show that

the alleged compactness of (E0 is not true by constructing a counter-

example: For the annulus |<|z|<2, the functions/„ = (f)"(z"-(f)n)/zn,

« = 1, 2, • • • , belong to (£0 with z0=f. Then {/„} tends to zero for

f + (5<|z|<2 and to infinity for |<|z|<f-<5, ô>0 as «-*oo.

If Q ^ 0AIJ, there exist the extremal functions A(z) which maximize

|/'(z0)| in 330. Those functions are called the Ahlfors functions which are

unique save for rotations [3]. If 1/c is an omitted value of A(z),

A(z)l(l —cAiz)) belongs to (£„. By the result cited above it is extremal for

the problem in (E0.

For any extremal g e <&0, let F be the set of all omitted values of g.

From the extremality of g the area of E is equal to 77. They used a trans-

formation
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and proved <D(l/g)e<B0 with 3>'(l/g(z0))=g'(zo) W- Hence 0(l/g) is an

Ahlfors function and there exists a point co e E such that |0(co)| = l.

Note that 0(h) is continuous in the whole plane [2]. Without loss of

generality (by a rotation) we set ®(co) = l and E+=Er\{Re(w — co)_0}.

Then from the equality statement for Schwarz's inequality in their proof

we infer that F+ coincides with the disc r^2 cos 0, |0j_?-77-/2 (w — co=relB),

except for a set of area zero. We can deduce, from 0(co) = l, that the

area of E—E+ vanishes. Denoting by c the center of the above disc, by a

direct calculation we see that 0(h) reduces to a linear transformation

l/(w-c) for |w-c| = l. Hence we have g=<5(l/g)/(l-|-cO(l/g)). Clearly

— 1/c is an omitted value of the Ahlfors function í>(l/g) and therefore g

is of the form stated in the abstract.
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