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Abstract. Simple estimates of the rate of growth and decay of

certain solutions of yi2n)—py=0 on [0, co) when p is eventually

nonnegative are used to obtain sufficient conditions for the exist-

ence of exponential solutions, solutions which approach 0, and

L2(fl, co) solutions.

We shall give an elementary estimate of the rate of growth of certain

solutions of

(1) /*«>-py = 0

when/* is an eventually nonnegative continuous function on [0, oo), and

an estimate of the rate of decay of solutions y of (1) such that for some x0,

(2) (-\yyu\x) ;> 0   for; = 0, 1, • • ■ , 2n - 1 and all x > x0.

It is a result of Hartman and Wintner [1] that there is a solution satisfying

(2).
These estimates yield immediately a generalization, in the sharpest

possible form, of a result of C. R. Putnam [6] on the existence of expo-

nentially increasing and decreasing solutions of (1) when/? is eventually

bounded away from 0 (Theorem 3). The estimate for the rate of decay of

solutions of the form (2) is then applied to establish a sufficient condition

for (1) to have a solution in £2(0, oo) (Theorem 5), and a necessary and

sufficient condition for a solution satisfying (2) to approach 0 (Theorem 4).

For « = 1, Theorem 4 is due to Hille [4].

One common method of proving the existence of £2(0, oo) solutions is

to verify that for some C>0, Ly (=y{2n) —py here) satisfies ||£HI!ïC||_y||

for all y with compact support in (0, oo). (|| • || denotes the L2 norm.) In

this case (1) has at least n linearly independent L2 solutions (see for

example Naïmark [5]). From the constant coefficient equationy(i)—y=0,

to which both Theorems 4 and 5 apply, it is clear that we cannot hope to

obtain this many L2 solutions or indeed to show, under the respective

hypotheses of Theorems 4 and 5, that every bounded solution of (1)
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approaches 0 or is in £2(0, oo). Nevertheless, the existence of even a

single L2 solution can be of considerable physical interest.

We begin by stating as a lemma the version of the result of Hartman

and Wintner [1] that we need.

Lemma.    Let p be nonnegative and continuous on [0, oo). Then

(3) y^-py = 0,       y(0)=l

has a solution z such that (— l/z'^—O on [0, oo) for j=0, I, ■ ■ • ,2n.

When n = l it is clear that z is unique and is the only bounded solution

of (3), since any solution j> such thaty(0)>0is increasing and unbounded.

Our basic estimate is now easily established. When «= 1 it is essentially

Theorem 9.2.1 of [3].

Theorem 1. Let p andq be distinct continuous functions on [0, oo) such

that />^¡7_0. Ifyp andya are positive solutions of (3) and

(4) /»»> - qy = 0,       y(0) = 1

respectively, and if yvj) (0)^/^(0) for j=l, 2, ■■■ , 2n-l, then/J^y^
for /=0, 1, • • • , 2re and v.— v.—>-oo as x—»-co.

Proof. Suppose first that y'p(0)>y'a(0). Set g=y„—yq. Then g(0)=0,
g'(0)>0, go>(0)^0 foTj=2, ■■■ , 2/1 — 1, and

g^=yr]-yr=pyv-^
=; q(y, - ya) = qg-

Since g'(0)>0, g is positive on some interval (0, s). But then g(x)>0 for

all x, since otherwise g{2n) must change sign before g does. It follows that

£(2n);>0 and hence that g(,)=0 fory'=l, 2, • • ■ , 2n— 1. Finally, g(x)^oo

as x—>-co since g' is positive and nondecreasing.

If yp(0)=y'Q(0), then for m = l,2, ■ • • let yv m be the solution of (3)

such that y'p,m(0)=y'v(0)+llm, /JUO^/J^O) for ;=2, 3, •• -, 2/7-1.
Then for any x, yPix)=lim yPtmix)^yaix). Hence g=y„—y<l=0 and, as

before, each g(,)_0. Since /J^*?, we must have g'^0 and so g^-co. This

completes the proof.

Corollary 1. If p^.q^.0 and if yp is any solution of (3) such that

/(¿'(O^O for 7=1, 2, • • • , 2n—1, then every solution y of (4) satisfies

\y\=KyP.

Proof. It is clear that a set of 2« linearly independent solutions y of

(4) can be found each of which satisfies 0<yU) (0)^/^(0) fory = 1, 2, • • • ,

2n-l.
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Corollary 2. If p^.q^.0, if n = \, and if zp and zQ are the unique

solutions of (3) and (4) respectively which satisfy (2), then zP(x)<zQ(x)

for x>0.

Proof. If zj,(0)_z¿(0), then zP—zg-*co. Hence zp<za on some

interval (0, e). If for some x0>0, zp(x0)=zQ(x0) while zp(x)<za(x) for

x_x0, then again zp—za—>-oo. Hence zp(x)<.zQ(x) for x>0.

Theorem 1 can be put in the following more suggestive form. For con-

venience we shall, for any sufficiently differentiable function h, write h¡

for the polynomial in the derivatives of h given by hj=e~hD'(eh). Note

that A0=l.

Theorem 2. Let h be a C2n function on [0, oo) such that h2r>.Q and

hj>0forj=l, 2, • ■ ■ , 2n—l. Supposep^.h2n. Then

(a) y^^Khjê for j=0, I, ■ ■ • ,2n whenever y is a solution of (3) such

that y(i)(0)^h¡(0) for j =1,2, ■■■ , 2/z-l.
(b) 0^i-iyz{j)^Lh2¿_}_xe-h for j=0, 1, • • • , 2n-l whenever z is a

solution of (3) which satisfies (2).

Proof. We may assume h(0)=0. Then (a) is simply a restatement of

Theorem 1 with q=h2n ax\dyq = eh. Let z be a solution of (3) which satisfies

(2) and let j> be a solution of (1) such that/" (0)^(0) for/=l, 2, • ■ • ,
2/1— 1. The function 2Í01 i—\yzU)y{2n~i~1) is constant since its derivative

is zero, and each term of the sum is nonnegative. Thus for each j, 0_

i-iyz^ = CI/2n-i-v and (b) follows from (a).

In particular we have

Corollary 3. If, in addition to the hypotheses of Theorem 2, htn_x is

bounded away from 0, then there are solutions y and z of (3) such that

y^Ké1, 0=z^Le"A.

In this notation Corollary 1 becomes

Corollary 4. Let h be as in Theorem 2. Suppose 0^p^h2n. Then

every solution y of (3) satisfies l/^l^/Oij-e* for j=0, I, • • ■ ,2n.

The hypotheses on h in all the above results are satisfied, for all suffi-

ciently large x, whenever h is a polynomial whose term of highest degree

has a positive coefficient. The special case h(x)=rx, r>0 yields

Theorem 3. //"lim inf p(x)>r2n, then there are solutions y and z of (1)

and jc0^0 such that for all x^x0, y(x)^Kerx, and 0^z(x)^Le-rx.

The case n=\ is due to C. R. Putnam [6], although it is not clear that

his proof gives the connection between lim inf p and the exponent.

We will now suppose that p is eventually nonnegative and use Theorem

2 to investigate the behavior of a solution of (1) which satisfies (2).
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Theorem 4. Let p be eventually nonnegative. If z is a solution of (1)

which satisfies (2), then z(x) approaches 0 as x—»oo // and only if

^t2^p(t)dt=œ.

Proof. We may assume that p(x)^.0 for all x. Suppose first that

J? t2n~1p(t)dt=oo. Let f(x)=$%t2n-1p(t)dt, and let v be the function

such that y(2"-i)=/, y(0)=l, and i/?)(0)=0 fory=l, 2, • • • , 2»-l. Now

set h=logv. Then each h¡ is positive and h2n(x)=x2n~1p(x)¡v(x). Since

/(*)->■ co as x-ooo, i;(x)_x2n_1 for all large x. Then pix)^.h2nix) and by

Theorem 2 we have eventually 0^z^Lh2¿_xe~h=Kf~1->-0.

Now suppose that $£ f2""1/)(i) </f< oo. It is a theorem of Haupt [2] that

for any solution y of (1), /2n_1,(jc) approaches a finite limit as x->oo.

Choose c>0 so that the solution^ with/j)(0)=c fory'=0, 1, • • •, 2n— 1

satisfies y{2n~^-*k- Then for all sufficiently large x,

/J)(x) = x»—i-i/(2n-/-i)!,       y = 0, 1, ■ • • , 2« - 1.

Let z be a solution of (1) satisfying (2). Then J¡¡¡1 (-lY¿ny?*~'~u=*M

is constant. If z(x)—»-0, then using the above estimate for the /'* yields that

for all large x,

2?!-l

2 (-lyz^ixK'-1//'! =í Mfix.

Since each term on the left is positive, Ju°(— l)1 z(,) ix)x'~1 dx=co for

some y. Now an integration by parts yields that

/•OO

(_iy-iz<>--i>(xy-2 jx = oo.

By induction, fâ —z'(x) dx=co. But this contradicts the boundedness of z.

Hence z cannot approach 0 and the proof is complete.

When n=\ there is a unique bounded solution. Thus we have the

following result of E. Hille [4].

Corollary 5. Let p be eventually nonnegative. The equation y" —py = 0

has a solution which approaches 0 as x—>-oo if and only if Jq tp(t) dt= co.

In a somewhat similar fashion we can establish

Theorem 5. Let p be eventually nonnegative. If z is a solution of (1)

which satisfies (2), and if for some c>[(3)(5) ■ • • (4«-l)/22""2]1/2 and all

large x, JJ [f2n-1/>(f)]1/2 dt^c^Jx, then z e L2(0, oo).

Proof.    Note that if d=2n — \, then

did - 1) • • • id - 2« + 2)/(2n - d) = (3)(5) • • • (4/j - l)/22"^2.



1974] GROWTH  AND  DECAY  OF  SOLUTIONS  OF yt2n) - py = 0 131

Choose dei2n-\, 2n) so that c2>did-\) ■ ■ • (d-2n+2)/(2n-d). Then

by the Schwarz lemma we have for large x that

- rx "12

c2x<

2

IV"~1p(0rVi dt

= Tí2"-1-'' dt [Xtdpit) dt = —-— x2n~d f Vp(i) A.
Jo Jo 2n — d        Jo

Hence

(5)     i "//(f) df ^ (2« - c/)c2x^2"+1 > £/(£/ - 1) • • ■ id - 2n + 2)xd-2n+1.

Now set f(x)=fötdp(t)dt and h=logv, where v{2n~1)=f, v(Q)=\, and

í;<í)(0)=0 fory=l, 2, • • • , 2/z-l. Then, as in the proof of Theorem 5,

b2n(x)=xdpix)lvix). By (5), h2nix)-^pix) for all large x. Hence we have

eventually that 0^z^K¡fq^.íer*=Kf-1. Since d-2*+l>|, /_1 e
L2(0, co) and the proof is complete.

One situation in which the hypothesis of Theorem 5 is satisfied is

Corollary 6. If lim inf x2npix)>a2>2~2ni3)i5) • ■ ■ (4n-l), then a

solution z of il) which satisfies (2) is in L2(0, oo).

Proof. For large f, t2np(t)>a2 or [í2n-1/?(í)]1/2>í7í-1/2. Hence for

sufficiently large x, JS [t2n~xp(t)f12 dt^a^Jx and Theorem 5 may be

applied.

The function (1 +x)~1'2 satisfies (1) with

p(x) = (3)(5) • • • (An - l)/22"(x + l)2".

Thus the hypotheses of Theorem 5 and Corollary 6 cannot be weakened

even to the extent of allowing equality. Moreover, when n = \ we have

the following partial converse of Corollary 6.

Corollary 7. Let p be eventually nonnegative, //lim sup x2p(x)<\,

then no solution z of y" —py=0 is in L2(0, oo).

Proof. We may assume that 0^p(x)<%(x+l)2 for all x. The unique

bounded solution z of y"—py = 0, y(0)=l satisfies (2). By Corollary 2,

z(x)^(x+l)~1/2. Thus the equation has no L2(0, oo) solutions.
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