GROWTH AND DECAY OF SOLUTIONS
 OF $y^{(2 n)}-p y=0$
 T. T. READ

Abstract

Simple estimates of the rate of growth and decay of certain solutions of $y^{(2 n)}-p y=0$ on $[0, \infty)$ when p is eventually nonnegative are used to obtain sufficient conditions for the existence of exponential solutions, solutions which approach 0 , and $L^{2}(0, \infty)$ solutions.

We shall give an elementary estimate of the rate of growth of certain solutions of

$$
\begin{equation*}
y^{(2 n)}-p y=0 \tag{1}
\end{equation*}
$$

when p is an eventually nonnegative continuous function on $[0, \infty)$, and an estimate of the rate of decay of solutions y of (1) such that for some x_{0},

$$
\begin{equation*}
(-1)^{j} y^{(j)}(x) \geqq 0 \text { for } j=0,1, \cdots, 2 n-1 \text { and all } x \geqq x_{0} . \tag{2}
\end{equation*}
$$

It is a result of Hartman and Wintner [1] that there is a solution satisfying (2).

These estimates yield immediately a generalization, in the sharpest possible form, of a result of C. R. Putnam [6] on the existence of exponentially increasing and decreasing solutions of (1) when p is eventually bounded away from 0 (Theorem 3). The estimate for the rate of decay of solutions of the form (2) is then applied to establish a sufficient condition for (1) to have a solution in $L^{2}(0, \infty)$ (Theorem 5), and a necessary and sufficient condition for a solution satisfying (2) to approach 0 (Theorem 4). For $n=1$, Theorem 4 is due to Hille [4].

One common method of proving the existence of $L^{2}(0, \infty)$ solutions is to verify that for some $C>0, L y\left(=y^{(2 n)}-p y\right.$ here) satisfies $\|L y\| \geqq C\|y\|$ for all y with compact support in $(0, \infty)$. (\| $\cdot \|$ denotes the L^{2} norm.) In this case (1) has at least n linearly independent L^{2} solutions (see for example Naĭmark [5]). From the constant coefficient equation $y^{(4)}-y=0$, to which both Theorems 4 and 5 apply, it is clear that we cannot hope to obtain this many L^{2} solutions or indeed to show, under the respective hypotheses of Theorems 4 and 5, that every bounded solution of (1)

[^0]approaches 0 or is in $L^{2}(0, \infty)$. Nevertheless, the existence of even a single L^{2} solution can be of considerable physical interest.

We begin by stating as a lemma the version of the result of Hartman and Wintner [1] that we need.

Lemma. Let p be nonnegative and continuous on $[0, \infty)$. Then

$$
\begin{equation*}
y^{(2 n)}-p y=0, \quad y(0)=1 \tag{3}
\end{equation*}
$$

has a solution z such that $(-1)^{j} z^{(j)} \geqq 0$ on $[0, \infty)$ for $j=0,1, \cdots, 2 n$.
When $n=1$ it is clear that z is unique and is the only bounded solution of (3), since any solution y such that $y^{\prime}(0)>0$ is increasing and unbounded.

Our basic estimate is now easily established. When $n=1$ it is essentially Theorem 9.2.1 of [3].

Theorem 1. Let p and q be distinct continuous functions on $[0, \infty)$ such that $p \geqq q \geqq 0$. If y_{p} and y_{q} are positive solutions of (3) and

$$
\begin{equation*}
y^{(2 n)}-q y=0, \quad y(0)=1 \tag{4}
\end{equation*}
$$

respectively, and if $y_{p}^{(j)}(0) \geqq y_{q}^{(j)}(0)$ for $j=1,2, \cdots, 2 n-1$, then $y_{p}^{(j)} \geqq y_{q}^{(j)}$ for $j=0,1, \cdots, 2 n$ and $y_{p}-y_{q} \rightarrow \infty$ as $x \rightarrow \infty$.

Proof. Suppose first that $y_{p}^{\prime}(0)>y_{q}^{\prime}(0)$. Set $g=y_{p}-y_{q}$. Then $g(0)=0$, $g^{\prime}(0)>0, g^{(j)}(0) \geqq 0$ for $j=2, \cdots, 2 n-1$, and

$$
\begin{aligned}
g^{(2 n)} & =y_{p}^{(2 n)}-y_{q}^{(2 n)}=p y_{p}-q y_{q} \\
& \geqq q\left(y_{p}-y_{q}\right)=q g .
\end{aligned}
$$

Since $g^{\prime}(0)>0, g$ is positive on some interval $(0, \varepsilon)$. But then $g(x)>0$ for all x, since otherwise $g^{(2 n)}$ must change sign before g does. It follows that $g^{(2 n)} \geqq 0$ and hence that $g^{(j)} \geqq 0$ for $j=1,2, \cdots, 2 n-1$. Finally, $g(x) \rightarrow \infty$ as $x \rightarrow \infty$ since g^{\prime} is positive and nondecreasing.

If $y_{p}^{\prime}(0)=y_{q}^{\prime}(0)$, then for $m=1,2, \cdots$ let $y_{p, m}$ be the solution of (3) such that $y_{p, m}^{\prime}(0)=y_{p}^{\prime}(0)+1 / m, y_{p, m}^{(j)}(0)=y_{p}^{(j)}(0)$ for $j=2,3, \cdots, 2 n-1$. Then for any $x, y_{p}(x)=\lim y_{p, m}(x) \geqq y_{q}(x)$. Hence $g=y_{p}-y_{q} \geqq 0$ and, as before, each $g^{(j)} \geqq 0$. Since $p \neq q$, we must have $g^{\prime} \neq 0$ and so $g \rightarrow \infty$. This completes the proof.

Corollary 1. If $p \geqq q \geqq 0$ and if y_{p} is any solution of (3) such that $y_{(p)}^{j)}(0)>0$ for $j=1,2, \cdots, 2 n-1$, then every solution y of (4) satisfies $|y| \leqq K y_{p}$.

Proof. It is clear that a set of $2 n$ linearly independent solutions y of (4) can be found each of which satisfies $0<y^{(j)}(0) \leqq y_{p}^{(j)}(0)$ for $j=1,2, \cdots$, $2 n-1$.

Corollary 2. If $p \geqq q \geqq 0$, if $n=1$, and if z_{p} and z_{q} are the unique solutions of (3) and (4) respectively which satisfy (2), then $z_{p}(x)<z_{q}(x)$ for $x>0$.

Proof. If $z_{p}^{\prime}(0) \geqq z_{q}^{\prime}(0)$, then $z_{p}-z_{q} \rightarrow \infty$. Hence $z_{p}<z_{q}$ on some interval $(0, \varepsilon)$. If for some $x_{0}>0, z_{p}\left(x_{0}\right)=z_{q}\left(x_{0}\right)$ while $z_{p}(x)<z_{q}(x)$ for $x \leqq x_{0}$, then again $z_{p}-z_{q} \rightarrow \infty$. Hence $z_{p}(x)<z_{q}(x)$ for $x>0$.

Theorem 1 can be put in the following more suggestive form. For convenience we shall, for any sufficiently differentiable function h, write h_{j} for the polynomial in the derivatives of h given by $h_{j}=e^{-h} D^{j}\left(e^{h}\right)$. Note that $h_{0}=1$.

Theorem 2. Let h be a $C^{2 n}$ function on $[0, \infty)$ such that $h_{2 n} \geqq 0$ and $h_{j}>0$ for $j=1,2, \cdots, 2 n-1$. Suppose $p \geqq h_{2 n}$. Then
(a) $y^{(j)} \geqq K h_{j} e^{h}$ for $j=0,1, \cdots, 2 n$ whenever y is a solution of (3) such that $y^{(j)}(0) \geqq h_{j}(0)$ for $j=1,2, \cdots, 2 n-1$.
(b) $0 \leqq(-1)^{j} z^{(j)} \leqq L h_{2 n-j-1}^{-1} e^{-h}$ for $j=0,1, \cdots, 2 n-1$ whenever z is a solution of (3) which satisfies (2).

Proof. We may assume $h(0)=0$. Then (a) is simply a restatement of Theorem 1 with $q=h_{2 n}$ and $y_{q}=e^{h}$. Let z be a solution of (3) which satisfies (2) and let y be a solution of (1) such that $y^{(j)}(0) \geqq h_{j}(0)$ for $j=1,2, \cdots$, $2 n-1$. The function $\sum_{j=0}^{2 n-1}(-1)^{j} z^{(j)} y^{(2 n-j-1)}$ is constant since its derivative is zero, and each term of the sum is nonnegative. Thus for each $j, 0 \leqq$ $(-1)^{j} z^{(j)} \leqq C / y^{(2 n-j-1)}$ and (b) follows from (a).

In particular we have
Corollary 3. If, in addition to the hypotheses of Theorem $2, h_{2 n-1}$ is bounded away from 0, then there are solutions y and z of (3) such that $y \geqq K e^{h}, 0 \leqq z \leqq L e^{-h}$.

In this notation Corollary 1 becomes
Corollary 4. Let h be as in Theorem 2. Suppose $0 \leqq p \leqq h_{2 n}$. Then every solution y of (3) satisfies $\left|y^{(j)}\right| \leqq K h_{j} e^{h}$ for $j=0,1, \cdots, 2 n$.

The hypotheses on h in all the above results are satisfied, for all sufficiently large x, whenever h is a polynomial whose term of highest degree has a positive coefficient. The special case $h(x)=r x, r>0$ yields

Theorem 3. If $\lim \inf p(x)>r^{2 n}$, then there are solutions y and z of (1) and $x_{0} \geqq 0$ such that for all $x \geqq x_{0}, y(x) \geqq K e^{r x}$, and $0 \leqq z(x) \leqq L e^{-r x}$.

The case $n=1$ is due to C. R. Putnam [6], although it is not clear that his proof gives the connection between $\lim \inf p$ and the exponent.

We will now suppose that p is eventually nonnegative and use Theorem 2 to investigate the behavior of a solution of (1) which satisfies (2).

Theorem 4. Let p be eventually nonnegative. If z is a solution of (1) which satisfies (2), then $z(x)$ approaches 0 as $x \rightarrow \infty$ if and only if $\int_{0}^{\infty} t^{2 n-1} p(t) d t=\infty$.

Proof. We may assume that $p(x) \geqq 0$ for all x. Suppose first that $\int_{0}^{\infty} t^{2 n-1} p(t) d t=\infty$. Let $f(x)=\int_{0}^{x} t^{2 n-1} p(t) d t$, and let v be the function such that $v^{(2 n-1)}=f, v(0)=1$, and $v^{(j)}(0)=0$ for $j=1,2, \cdots, 2 n-1$. Now set $h=\log v$. Then each h_{j} is positive and $h_{2 n}(x)=x^{2 n-1} p(x) / v(x)$. Since $f(x) \rightarrow \infty$ as $x \rightarrow \infty, v(x) \geqq x^{2^{n-1}}$ for all large x. Then $p(x) \geqq h_{2 n}(x)$ and by Theorem 2 we have eventually $0 \leqq z \leqq L h_{2 n-1}^{-1} e^{-h}=K f^{-1} \rightarrow 0$.

Now suppose that $\int_{0}^{\infty} t^{2 n-1} p(t) d t<\infty$. It is a theorem of Haupt [2] that for any solution y of (1), $y^{(2 n-1)}(x)$ approaches a finite limit as $x \rightarrow \infty$. Choose $c>0$ so that the solution y_{c} with $y_{c}^{(j)}(0)=c$ for $j=0,1, \cdots, 2 n-1$ satisfies $y_{c}^{(2 n-1)} \rightarrow \frac{1}{2}$. Then for all sufficiently large x,

$$
y_{c}^{(j)}(x) \leqq x^{2 n-j-1} /(2 n-j-1)!, \quad j=0,1, \cdots, 2 n-1
$$

Let z be a solution of (1) satisfying (2). Then $\sum_{j=0}^{2 n-1}(-1)^{j} z^{(j)} y_{c}^{(2 n-j-1)}=M$ is constant. If $z(x) \rightarrow 0$, then using the above estimate for the $y_{c}^{(j)}$ yields that for all large x,

$$
\sum_{j=1}^{2 n-1}(-1)^{j} z^{(j)}(x) x^{j-1} / j!\geqq M / 2 x
$$

Since each term on the left is positive, $\int_{0}^{\infty}(-1)^{j} z^{(j)}(x) x^{j-1} d x=\infty$ for some j. Now an integration by parts yields that

$$
\int_{0}^{\infty}(-1)^{j-1} z^{(j-1)}(x) x^{j-2} d x=\infty
$$

By induction, $\int_{0}^{\infty}-z^{\prime}(x) d x=\infty$. But this contradicts the boundedness of z. Hence z cannot approach 0 and the proof is complete.

When $n=1$ there is a unique bounded solution. Thus we have the following result of E. Hille [4].

Corollary 5. Let p be eventually nonnegative. The equation $y^{\prime \prime}-p y=0$ has a solution which approaches 0 as $x \rightarrow \infty$ if and only if $\int_{0}^{\infty} t p(t) d t=\infty$.

In a somewhat similar fashion we can establish
Theorem 5. Let p be eventually nonnegative. If z is a solution of (1) which satisfies (2), and if for some $c>\left[(3)(5) \cdots(4 n-1) / 2^{2 n-2}\right]^{1 / 2}$ and all large $x, \int_{0}^{x}\left[t^{2 n-1} p(t)\right]^{1 / 2} d t \geqq c \sqrt{ } x$, then $z \in L^{2}(0, \infty)$.

Proof. Note that if $d=2 n-\frac{1}{2}$, then

$$
d(d-1) \cdots(d-2 n+2) /(2 n-d)=(3)(5) \cdots(4 n-1) / 2^{2 n-2}
$$

Choose $d \in\left(2 n-\frac{1}{2}, 2 n\right)$ so that $c^{2}>d(d-1) \cdots(d-2 n+2) /(2 n-d)$. Then by the Schwarz lemma we have for large x that

$$
\begin{aligned}
c^{2} x & \leqq\left[\int_{0}^{x}\left[t^{2 n-1} p(t)\right]^{1 / 2} d t\right]^{2} \\
& \leqq \int_{0}^{x} t^{2 n-1-d} d t \int_{0}^{x} t^{d} p(t) d t=\frac{1}{2 n-d} x^{2 n-d} \int_{0}^{x} t^{d} p(t) d t
\end{aligned}
$$

Hence
(5) $\quad \int_{0}^{x} d p(t) d t \geqq(2 n-d) c^{2} x^{d-2 n+1}>d(d-1) \cdots(d-2 n+2) x^{d-2 n+1}$.

Now set $f(x)=\int_{0}^{x} t^{d} p(t) d t$ and $h=\log v$, where $v^{(2 n-1)}=f, v(0)=1$, and $v^{(j)}(0)=0$ for $j=1,2, \cdots, 2 n-1$. Then, as in the proof of Theorem 5 , $h_{2 n}(x)=x^{d} p(x) / v(x)$. By (5), $h_{2 n}(x) \leqq p(x)$ for all large x. Hence we have eventually that $0 \leqq z \leqq K / h_{2 n-1}^{-1} e^{-h}=K f^{-1}$. Since $d-2 n+1>\frac{1}{2}, f^{-1} \in$ $L^{2}(0, \infty)$ and the proof is complete.

One situation in which the hypothesis of Theorem 5 is satisfied is
Corollary 6. If $\lim \inf x^{2 n} p(x)>a^{2}>2^{-2 n}(3)(5) \cdots(4 n-1)$, then a solution z of (1) which satisfies (2) is in $L^{2}(0, \infty)$.

Proof. For large $t, t^{2 n} p(t)>a^{2}$ or $\left[t^{2 n-1} p(t)\right]^{1 / 2}>a t^{-1 / 2}$. Hence for sufficiently large $x, \int_{0}^{x}\left[t^{2 n-1} p(t)\right]^{1 / 2} d t \geqq 2 a \sqrt{ } x$ and Theorem 5 may be applied.

The function $(1+x)^{-1 / 2}$ satisfies (1) with

$$
p(x)=(3)(5) \cdots(4 n-1) / 2^{2 n}(x+1)^{2 n}
$$

Thus the hypotheses of Theorem 5 and Corollary 6 cannot be weakened even to the extent of allowing equality. Moreover, when $n=1$ we have the following partial converse of Corollary 6.

Corollary 7. Let p be eventually nonnegative. If $\lim \sup x^{2} p(x)<\frac{3}{4}$, then no solution z of $y^{\prime \prime}-p y=0$ is in $L^{2}(0, \infty)$.

Proof. We may assume that $0 \leqq p(x)<\frac{3}{4}(x+1)^{2}$ for all x. The unique bounded solution z of $y^{\prime \prime}-p y=0, y(0)=1$ satisfies (2). By Corollary 2, $z(x) \geqq(x+1)^{-1 / 2}$. Thus the equation has no $L^{2}(0, \infty)$ solutions.

References

1. P. Hartman and A. Wintner, Linear differential and difference equations with monotone solutions, Amer. J. Math. 75 (1953), 731-743. MR 15, 221.
2. O. Haupt, Über das asymptotische Verhalten der Lösungen gewisser linearer gewöhnlicher Differentialgleichungen, Math. Z. 48 (1942), 289-292. MR 4, 276.
3. E. Hille, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969. MR 40 \#2939.
4. ——, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252. MR 10, 376.
5. M. A. Naĭmark, Linear differential operators. Part II: Linear differential operators in Hilbert space, GITTL, Moscow, 1954; English transl., Ungar, New York, 1968. MR 16, 702; 41 \#7485.
6. C. R. Putnam, On isolated eigenfunctions associated with bounded potentials, Amer. J. Math. 72 (1950), 135-147. MR 11, 517.

Department of Mathematics, Western Washington State College, Bellingham, WAShington 98225

[^0]: Received by the editors February 26, 1973 and, in revised form, July 11, 1973.
 AMS (MOS) subject classifications (1970). Primary 34C10.
 Key words and phrases. Exponential growth, monotonic solution, $L^{2}(0, \infty)$ solution.

