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A UNIFIED TREATMENT  OF SOME THEOREMS
ON  POSITIVE MATRICES

GÉRARD LETAC

Abstract. Various theorems on positive matrices are shown

to be corollaries of one general theorem, the proof of which bears

on Legendre functions, as used in Rockafellar's Convex analysis.

1. Introduction: The main theorem. Let X be a finite set, ([¿(x))xeX

strictly positive numbers, and H a fixed linear subspace of Rx. We shall

prove the following :

Theorem 1. There exists a unique {nonlinear) map from Rx to H,

denoted ft—>hf, such that

2 texp/(x) - exp hf(x)]g(x)/¿(x) = 0
xeX

for all g in H.

2. A first application: Matrices with prescribed marginals. Given

an «-sequence /• = (ri)"=1 and an /w-sequence s=(sj),J!=1 of nonnegative

numbers such that 22-i ^i=Yj=\ •*/> denote by <J?(r, s) the set of (n, m)

matrices (aiS) with a^O such that ri=^JL1aij and Sj—^X-iO^ for all

1 = 1,2, •••,« and j=l,2, • • • , m. Also, let E={1,2, • ■ ■ ,n} and

F={1, 2, ■ • •, m}. We define the linear map c from RE®RF to RExF by:

c[(b¡)ieE> (t>'j)jeF] = (bi + b'i)(i.i)eExF-

If A' is a subset of Ex F, tt denotes the canonical map from RExF to Rx,

i.e.

7T[{ai})tí,i)eExF\ — (aii)(i.i)eX-

We say also that X is an (r, s) pattern if there exists (ai}) in ^#(r, s) such

thatX={(ij);a«>0)-

Now the first corollary to the Theorem 1 is :

Corollary 1. Let two sequences r=(r$=1 ands=(s,)™=l of nonnegative

numbers with   2?=i r¿=2í=i sn  M an  (n,m)  matrix with /¿¿3-=0 and
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Then there exist two diagonal matrices

Dh = (eb\ eb\ ■■■, eb")

and

d;.-.(«V •;,«**)

with positive diagonal elements such that DbMD'b, is in ^M(r, s) if and only

if X is an (r, s) pattern. Furthermore, the set (b, b') of RE(BRF, such that

DbMD'v is in J((r, s), is exactly a translate of Ker[n ° c] if nonempty.

Proof. If b and b' exist, the fact that X is an (r, s) pattern is obvious.

Conversely, suppose that X is an (r, s) pattern. Then there exists (a{j) e

Jl{r,s) with Ar={(/,y');ai.>0}. Denote fij = U>%{aiJliiu) when (i,j)eX

and apply the theorem to this/e Rx and to H, the range in Rx of tt ° c.

Then there exists h = (hij)(iJ)EX in H such that

(i.j)eX U,i)eX

for all (gij)(i.j)ex of H, and such h is unique. Writing now /z„=¿¿+¿>j

for some (¿>¿)f=1 e RE and (b'j)T=i e RF, we have (eVü^Oii.^E 6 ^(r, s).

All suitable (b, b') must satisfy n ° c(b, b')=h, and this ends the proof.

In order to complete Corollary 1 we have to specify Ker[7r ° c] for a

given X^ExF. We index E and F such that Ec\F= 0. We consider the

linear graph (nonoriented) with EKJF as the set of vertices and X as the

set of edges. The connected components ofthat linear graph can be written

(£aUFa)ae^, where A is some index set (with Ex*JFa nonempty, but

Ea or F„ = 0 can happen), and we call (EJxeA and (Fa)aeA the partitions

of E and F associated to X.

Proposition 1. Let X be a subset of ExF, tt the canonical map from

gExF t0 ßX (Ea)xeA an(j (FJxeA the associated partitions of E and F.

77!e«dim[Ker(77 o c)]=number ofa such that E^xF^ is not empty. Further-

more, when (¡i,y'i) and (i2,j2) are in ExxFx and (b, b') e Ker[7r o c], then

K = K =  —bjt = ~bir

Proof. Suppose EaxFx is nonempty; take (i1,j1) and (i2,j2) in ExxFx

and (b, b') in Ker(-7r ° c). From the definition of Ea\JFx, either there

exists a sequence of X

(e0Jo), 0i,/o)> (ei.A), (e2,A), • * •, (enJn-i)

or there exists a sequence of X

(e0,fo), (c0»/i). (ei,/i), (ei,/2), • • •, (e„,/n)

with e0=c1 and e„ = c2.
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Since be+b'f=0 when (e,f) e X this implies that bh=b¡2. In the same

way we prove b'¡=b'h. To see that btl = — b'jx, we find a path from ¿j

toy'j in an analogous manner. Then dim Ker[7r o c] is not larger than the

number of nonempty ExxFx. From this, it is easy to finish the proof.

Remarks. Corollary 1 was conjectured in 1964 by P. Thionet who is a

French statistician [10], and in a weaker form in 1960 [9]. Proofs in partic-

ular cases are given from [1]. Independently, the case n=m, rt=Sj = l was

intensively studied in a paper by R. Sinkhorn in 1964 [7]; see [3] for a

recent proof and references.1

It is easy to prove the following: Zis an (r, s) pattern if and only if for

any x e X there exists an (r, s) pattern Y(x) such that x e F(x)c X. An

interesting feature of the case of doubly stochastic matrices is that the

patterns Y(x) are associated in a natural way to permutation matrices,

permitting a characterisation, via a König theorem, of a corresponding

pattern as a direct sum of so-called fully indecomposable matrices [3].

It would be interesting to get such a combinatorial characterisation for

a general (r, s) pattern.

3. Second   application:   A   theorem   due   to   D.   J.   Hartfiel.    Let

E={\, •••,«} and jMs be the set of «-square matrices (a¿í) with atí = 0

and 2"=1 aö=*2*_i aH for all / in E. We define the linear map ¿/from RE
toRExEby:

d[(bi)ieE] = (bf — bj)HJ)eExE.

If X is a subset of ExE, tt is the canonical map from RExB to Rx. We

say also that X is a symmetric pattern if there exists (aa) in JÍ', such that

X={(i,j);aij>0}. The second corollary of Theorem 1 is essentially in

D. J. Hartfiel [2].

Corollary 2. Let M—i/x^) be an n-square matrix with ^„=0 and

Ar={(i",y');(«ii>0}. Then there exists one diagonal matrix Db = (ebl, eb%, • • • ,

ebn) with positive diagonal elements such that DbMDbl is in^t s, if and only

if X is a symmetric pattern. Furthermore, the set of b e RE such that

DbMDbl is in^s is exactly a translate ofKev[d° tt] if nonempty.

Proof.   Easy, taking H=tt o d[RE].

If we want now to complete the Corollary 2, we have to characterise

Ker[7roc] for a given X^ExE and characterise symmetric patterns.

1 Note added in proof. Professor Caussinus from the University of Toulouse has

indicated to the author that a complete story of Corollary 1 can be found in Chapter 4

of M. Bacharach's monograph, Biproportional matrices and input-output change, Cam-

bridge University Press, 1970. The first proof of Corollary 1 must be credited to W. M.

Gorman (1963).
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We consider the oriented graph with E as the set of vertices and X as the

set of arcs.

Proposition 2. X is a symmetric pattern if and only if for any e e E

there exists a sequence e0, elt • • • , en in E such that e0=en=e and (e¿_!,

e¿) e X for /'=!, • • • , n— 1 («^1) (in terms of the graph (E, X) every

vertex belongs to a circuit).

Now we suppose that X is a symmetric pattern and we partition the

set of vertices of the graph (£, X) into connected components (Ex)xeA

where A is some index set and Ex¿¿ 0. These components correspond to

"irreducible matrices" of [2]. We say that Ex is the partition of E associ-

ated to the symmetric pattern X.

Proposition 3. Let X be a symmetric pattern of ExE, (Ex)xeA the

associated partition of E. Then dim[Ker(7r ° d)]=number of elements of A.

Furthermore b e Ker(-7r o d) and ii and i2 e Ex implies bix—bi%.

Proof.   Similar to Proposition 1.

4. Other applications. Following the same vein, we may now consider

the result of R. Sinkhorn [8], stating that if M is an (n, n) symmetric

matrix with strictly positive coefficients there exists one diagonal matrix D

with positive diagonal coefficients such that DMD e ^(r,r), where

r=(r¡)"=l is given (Marcus and Newman [4] consider the doubly stochastic

case).

Denote £={1, ••■,«} and define the linear map e from RE to RExE

by:

eKbdieE) = (bi + b¡)UijUBxB.

If X is a subset oí ExE, call X an r-pattern if there exists a symmetric

matrix (aiy) oïJ((r, r) such that X={(i,j); au>0}.

Corollary 3. Let M=(j¿ij) be a symmetric matrix with /¿„^O,

r=(rl)^l a sequence such that r>0 and X={(i,j);pij>0}. Then there

exists one diagonal matrix Dh = (ebi, ■ ■ ■, ebn) with positive diagonal elements

such that DbMDh is in Jt(r, r) if and only if X is an r-pattern. Furthermore,

the set of b e RE such that DbMDb is in ^(r, r) is exactly a translate of

Kerfe ° rr\ if nonempty.

Proof.    Easy, taking H=r o e[RE].

A similar study of dimension of Ker[7r ° e] can be done considering the

number of components of the graph (E, X) ; characterisation of r-patterns

depends on r in an unknown way, except in the doubly stochastic case,

which is easy to work.
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A trivial application of Theorem 1 is conditional expectation on a finite

probability space : Let (Xx)xeA be a partition of X; consider the boolean

algebra 91 generated by (Xa)xeA and take H as space of 2I-measurable

functions.

5. Proof of Theorem 1.    Consider the function F defined on H by:

F(«)=2>«exp«(x).
xeX

Since ¡j,(x)>0 for all x, F is strictly convex. One can easily check that F

is continuously differentiable and that grad Fh, element of the dual space

H* of H, is given by :

grad Fh(g) = 2 M*)g(x)exp h(x)
xeX

for all g in H. Now to each/ of Rx, we associate one point «* of H*

defined by:

ñ*(g) = 2 Kx)g(x)expf(x)   for all geH.
xeX

We have to show that there exists one and only one point hf£ H such that

A?=gradiy
Now we introduce the conjugate function F* of F, valued in ÄU{+ oo}

and defined on H* by:

F*(h*) = sup [«*(«) - F(h)].
heH

We denote by C* the interior of {«*; F*(«*)<oo}. We use the following

inequality :

bea _ e" <: a(ea - 1)       (a, beR)

(to see this, replace b with a+è) to get F*(hj)^J¡xeX [¿(xtfix^efw — l)

for all/in Rx. Clearly the range of ft—>«* in //* is an open set, so h* e C*.

We made an appeal to Rockafellar [6, p. 258, Theorem 26.5]: we have

shown that (H, F) and (C*, F*) are convex functions of Legendre type;

from the quoted theorem we can assert that the map « i—>grad Fh from H

to H* is injective and that the range of this map is C* ; this ends the proof.

6. Other results and remarks. The trivial example of conditional

expectations quoted at the end of §4 leads us to ask if PH : Rx->-H defined

by i"if/=«/ by means of Theorem 1 has some properties of ordinary

linear projection.

Theorem 2. If PH:RX^H is defined by PHf=hf and if H and H'
are two linear subspaces of Rx, such that H<^H', then Ph=Ph^h-
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Proof. Define GH:RX-+H* by (GHf)(g)=lx,x e^g(x)M(x) and
grad FH : //-»//* as in the proof of Theorem 1. We know that grad FH °

GH=GH and we have to prove

grad FH°PH° PH. = GH,    or    GH o PH, = GH,

which is trivially true when H<= H'.

From now, //is fixed and we denote 2*ex/MM*) by $fd(*- Notations

are those of Theorem 1.

Theorem 3.    If H contains constant functions of X, then:

e"fhf d/j.jeffd/* >je

and the equality holds only if fis in H.

Proof.    From the inequality t^.1 — e~l, for / in Ä (strict if /#0),

we get

|V(1 - eh'-f) d/j, ̂  (V(/ - hf) dp.

Since H contains constants, the first member of the inequality is 0 (let

g=l in the statement of Theorem 1). Now J efhfd(i=§ e^'hfdfi (let

g=hf), and we are done. Case of equality is clear.

Theorem 4. Let h in H and T: X-^X. Suppose that either h ° T is in H

or H contains constants and ¡j, ° T=[i. Then hh*T=h implies h=h ° T.

Proof. If h ° T is in H, we use uniqueness of hf in Theorem 1. In the

other case, we apply Theorem 2 to f=h ° T. But, since /n ° T=¡i, we

have

/**■ -/
¿haft;

this is the case of equality of Theorem 3.

Remarks. Choose X={1, ■ ■ ■ ,n}x{l, • • • , m}, ,a(.x)=l and H as

in §2. If/in Rx is such that J é1 d¡i=\, Theorem 3 gives an inequality

about entropy of the joint law of probability, well known in information

theory (see [5, pp. 146-157]). If T\% a permutation of X, of course ¡a, o T=

[i; a nice interpretation of the second part of Theorem 4 is as follows.

Let r=(exp ¿>¿)"=1 and i=(exp b'j)?-i such that

n n

y exp bt = 2 exP b'j = l.
j=i
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Put the nm numbers exp(¿¿+¿>;) on slips of paper, try to put them in an

(«, m) matrix in order to get an element of ^K{r, s); you always get the

matrix (expfti+bj)), that is to say, the product distribution of probability.

Of course we need only Theorem 3, not Theorem 1, to get this result,

which can be generalised to a product of countable spaces, with distribu-

tions r and s such that 2» e6i¿>¿<co, 2í e"i'b'j<.co. I think this is not true

if 2i eb'bi= oo, but I know of no counterexamples.

Considering the exponential in Theorem 1 suffices for applications, but

we could replace the exponential by any convex function <p positive and

increasing, with primitive y>. The proof of Theorem 1 would start from

F{h) = ^xW{h{x))fi{x).

Generalisations of Theorem 1 to measured spaces (X, fi) will be done in

a forthcoming paper.
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