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ON LOCAL  SOLVABILITY OF PSEUDO-
DIFFERENTIAL EQUATIONS

A. menikoff

Abstract. A sufficient condition for the local solvability of

the equation «,—A(x, t, Dx)u=f(x, t) is proved, where A is a first

order pseudo-differential operator with real symbol. This is a

special case of the local solvability conjecture of Nirenberg and

Trêves.

Introduction. Let P(x, D) be a linear partial differential operator of

principal type with smooth complex value coefficients. The question of

when the equation Pu=f is locally solvable has been settled by Nirenberg

and Trêves [4] and Beals and Fefferman [1]. Local solvability is equivalent

to the condition:

(P) The imaginary part of P does not change signs on the null bi-

characteristics of the real part of P.

For a pseudo-differential operator Nirenberg and Trêves conjectured that

local solvability is equivalent to the condition:

Ç¥) On every null bicharacteristic of Re P, if Im P is negative at a

point it remains nonpositive from then on.

The purpose of this note is to prove the following special case of this

conjecture.

Theorem 1. Let P=d\dt—Ait, x, Dx) for it, x) e D. where A is a first

order pseudo-differential operator with real symbol a(t, x, £). Assume that

OF) ifa(t0, x0, |0)<0 then for t>t0, a(t, x0, ¿f0)=0; and ifa(t0, x0, f0)=0

then grad^ a(t0, x0, f0)=0.

Then P is locally solvable.

Theorem 1 is a simple consequence of the following a priori estimate

for the adjoint of P.
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Theorem 2. Let L=d¡dt—ait, x, Dx) for it, x) eQ=IxU^Rn+1

(/ is an interval containing f=0) where A is a first order pseudo-differential

operator with real symbol ait, x, ¿7). Assume that if ait0, x0, £0)>0 then

ait,x0, |0)^0/or t>t0. Also assume that if a=0 that grad^ a=0. Then

given e>0, there exists a ô such that

Hullo = s \\Lu\\0  for all u e C?((-ô, ô) X U).

The proof of Theorem 2 follows the lines of the constant coefficient

case (cf. Nirenberg-Treves [5]). To do this first we localize A as in

Hörmander [2]. We need to prove an estimate similar to the sharp

Gârding's inequality, but when the symbol does not have constant sign.

Lax-Nirenberg [3] have observed that the positivity of the symbol is

needed in the proof of Gârding's inequality only to establish that

Igrad^ a(x, £)\2^C\a(x, f)| |f|_1. But this is a consequence of our second

assumption about a.

Proof of Theorem 2.    We use the notation of Hörmander [2]. In partic-

Lemma 1.    Ifa(x, |)=0 implies grad^ a(x, f)=0 then

|grad|ß(x, f)|2 (1 + |f |) + Igrad, «(x, f)|2 (1 + Ifl)"1 < C|a(x, 0|.

Proof. If f(x)=0 implies f'(x)=0 then |/(x)| is a nonnegative C2

function. Hence |/'(x)|2:^2|/(x)|max|/"|. Applying this inequality to each

variable in question and using the pseudo-homogeneity of a we get the

lemma.

Hereafter we make the convention that C is any constant depending

only on the symbol of A.

We now introduce Hörmander's partition of unity. Construct non-

negative functions (f>j(x)eC0°(Rn) such that 2£i $(*)=! and x,ye

supp r/>, implies that \x—y\^C, and the supports overlap a bounded

number of times. Set Y>3.(f) = <^.(f|f|-1/2) also in C0x(Rn). The important

properties of the f¡ are that 2 w) — 1 >

(2) f, r¡ e supp ip} implies |f — r¡\ < C |f|1/2   and

(3) 2, \v¿v) - Vi(f)l = ——— + —r-— •
i=l |s| |s|

(See Hörmander [2, pp. 141-142] for proofs.) Let ¡j be any point in the

support of y>¡ and set u'kix)=^>kix\^j\1/2)y)JiD)u and 4>¡k=ipÁx\íi\1,i).

Observe that

(4) 2ll"rt«o=ll"llo-
i.k

Choose xjk an arbitrary point in the support of <pjk.
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Lemma 2.    Depending on whether a(x'k, f0=° or <0,

Reirkix)WjiD)Au, Yk(x)Wj(D)u) ^ Rik(t)    or    <J?Ä(f)

H>fere2/.*l**(0láCK0llS-

Proof of theorem 2. Let Lu=f By the first assumption on a, for

eachy, k there is a tjk such that a(f, xJt, f)^0 for t<tjk and ^0 for

f>f3j.. Let u e Cq((—ô, ô)x U), d to be determined in a moment. If

a(t, xjk, f 3)^0 we have that,

^pL" = 2 Re(f*(xM(Z)K, «**)
</f

= 2Re(f>J(D)(/lM+/),uft)

= 2Rrt+||^(x)Vj(/))/||2+||M2

Upon integrating the above inequality from —¿to tjk we get

»/•All2 <      '""IB    (t\ _L  9JJ*.„   fil2 _L  ll„i*i|2 J«ii«3Ä:(f)ir<jtft2Rjt(t) + Hlky>Jf + \\uik\\2dt.
-ô

Similarly when a(xik, f 3)=0 we get

llu'W ^ ¡52Rjk(t) + U^./ll2 + \\uik\\2dt.

Combining the last two inequalities, summing over y and k and applying

Lemma 2 and equation (4) yields that

Nlo - 2 \\uikf ̂ f 2 *« + HikWÁD)f\\2 + ||urtf di
« "!~ö ik

CO
£j_c\\u\\l + ||/(i)||2df.

If we choose ô small enough so that 4óC<l it follows that

\\U(t)\\2 = 2ÎÔ\\f(t)\\2dt
J-í-ô

and integrating once more that

\\\u(t)\\2dt = 2áj* j|/(f)l|2 df,

which proves Theorem 1.

Proof of lemma 2.    First we will show that,

(6) 2 \(fÀD)Au, y>,(D)u) - (AWj(D)u, Vj(D)«)| = C ||u|
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Let â(r], i) be the Fourier transform of a(x, i) with respect to x. We

may assume that, outside of U, a has compact support in x, so it then

follows that \â(r], ff)| ̂ C^lff |(1 + \r¡\y~N for any integer N. Using Parseval's

theorem, the left-hand side of (6) equals

Si 2,a(r¡ - ff, Í)i<j>%r¡) - y¿ri)y>tf))iK£)<K-t¡) di dr¡

= \ jjâiv - Í, ff) \y¿n) - *m* ü(Í)Ú(-r¡) di dr¡.

Taking absolute values, summing up over/ and applying inequality (3)

we may bound the left-hand side of (6) by

JJ(1 +
C^\[C]r^_Jl
\v - f I) ifi ifi

if N ^ n + 1.

Next setting A¿=a(x, f3) + 2"=i a*(x, ij)(Dv — ff,), we have that

(7) 1(04 - AdvAPyu, WÂD)u)\ = C \\Vi(D)u\\l

Parseval's theorem tells us that the left side of (7) equals

ff{áfo - ff, ff).- áir¡ - ff, ff,) - 2 â\r, - ff, ff.Xff, - ff')j

" V¿(»?)V3(Í)"(-»?)"(Í) dr¡ di.
But ¡i-i^Cli^'2 when ^(ff^O.

Thus by Taylor's theorem the expression in parentheses is

oi  'f'1"1 £|JV if - ?/) - o((i +1, - fir*)
M + |jy - ffr /

and the bound follows. Note that

Rei4>ix)Aju, <f>u) = Retain, <f>u) + i (2 av<j>iiD,)(f> \u\2)
(8) l ^  v i

= Re(Aj<f>u, <f>u)   since a is real.

Combining (6), (7) and (8) we have that

(9) 2 IRe^rtOcMDM«, uik) - ReLV*, urt)| ̂  C ||«||2.
i.Jr

Let

uÄ(x) = exp{i(x, i>i}vikiix - xik) [if'2)
and

WiiD)u = exp{i(x,ij)}viix\ij\1'2)
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Then <l>kix)v' and vik differ only by a translation; [ylrSC if y e supp v'k

and |ff|^C if ff e supp vK Therefore it follows that

f     2     \yßD*vik\2 dy ̂  C   2     f\Dxvik\2dy
J k:\a+ß\aN k:\x\£N J

= c   2     ¡\D'Mx)Ay)\dy
UO) t;|a|SiV J

^C2    (\DV(y)\dy
ItrlSjV Ja|SiV •

^c^lff.r72!!^/))«!!2.

By a change of variables we see that

(AjU**, uik)

= Iff,,""" \vik(y)\a(xik + y |ff3|-1/2, ff,)

+ 2 * V* + y lf,r1/2, f,) Ifil178 D,W) dy.
V '

By Taylor's theorem, the fact that supp v'k is bounded, and (10), we have

that

2 (AjUjk, uik) - |ff3.|-"/2 \vik(y)[a(xik, ff,) + 2 «,(*'*. ff,) |ff3|-1/2 y
k J 1 v

(11) +2 «V*, ff,) |ff3|1/2 D¥W) dy
V '

^ lf3|-"/2      2 f |/W*I dy ̂  C ||^(D)«||2.

Finally we have, by using Lemma 1 and the Cauchy-Schwartz inequality

and the bound on the support of vjk,

2 f a\xik, ffO |ff']1/2 (Dyk(y))vik(y) dy
V   J

= 2fáv(xrt,ff3)ifi1/2fviei,t(f)i2^
V   v

<, \ [\a(xik, ffÓl |f5ÍÉ(ff)|*dff + f-£- Iff'! Iffl2 \vik(i)\2di
4J J |ff3!

^± j\a(xik, i^Wyy2 dy + H^2 \\uik\\l
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Similarly,

2av(xrt,ff0lff3r1/2y|ftt(y)|2dy
v

<: i f |a(x>* ffOl |frt(y)l2 + \cy2 \vik(y)\2 dy

= ~ \a(xik, ffOl \vik(y)\2 dy + |ff3!"/2 \\uik\\20.
4

If a(x'k, i')—0 we may combine this with (9) and (11) to get

(^k(x)Wi(D)Au, O ^ -Rjk

and 2 I^¿íI = C|m|o- This and similar considerations for the case a(x'k, ffj)<

0 completes the proof of the lemma.
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