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APPROXIMATELY  CONVEX  AVERAGE SUMS

OF UNBOUNDED SETS

M.   ALI  KHAN1

Abstract. In this note we show that the average sum of a

large but finite number of unbounded and open sets is approxi-

mately convex if their "degree of nonconvexity" is bounded.

I. Introduction.    In [4], Loeb proved the following theorem for the

nonstandard space *Rn.

Theorem 1. Let T be an internal star-finite set and, for each t e T,

let v(t) be a vector in n-space *Rn with nv(t)~0. For each internal set

B^T, let S(B) = J_tEB v(t). Then the following is true: Given internal sets

/?£ T and Cç T and given Xe*R with X e *(0, 1), there exists an internal

set D^Twith S(D)~XS(B) + (l-X)S(C).

[4] should be referred to for notation and references to nonstandard

analysis.

Using this theorem, Brown [2] has shown that the average sum of a

"large" number of bounded sets is approximately convex. In economic

applications the sets one is concerned with are typically productions

sets or the set of all points preferred to a given commodity bundle. Some-

times the structure of the problem is such that requiring these sets to be

bounded is not a severe restriction. An example is the work on the existence

of competitive equilibrium where the initial resources furnish a bound to

these sets. However, in other problems, asking these sets to be bounded

is a rather severe restriction. Such a situation arises when one wants to

prove the equivalence between two solution concepts, e.g. between the

core and competitive equilibria.

In this note we show how a particular measure of nonconvexity can be

used to remedy this difficulty. A useful corollary of this exercise is that

the assumption of compactness of the individual sets is not needed for
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the validity of the version of the Shapley-Folkman theorem most often

used in economics.

II. Infinitely large number of sets. Let F be an internal set- of positive

integers where |F|, the number of elements in T, is co, some infinite natural

number. That is, T= (1, 2, • • -, co) and co e *N-N. Let G e 0>i*Rnf

be an internal correspondence from F into *Rn. Define (l/co)2¡eT G(t)

as the set of points which are average sums of all internal selections from

Ylti G(t). Finally a set B in *Rn is said to be S-convex if for all x,yeB

and any X e *(0, 1) there exists a zeB such that zc^.Xx+(l— X)y. Using

Theorem 1, the following can be shown.

Theorem 2.2 If G is an internal correspondence such that (3/V/eA7)

(Vi e T){\\x(t)\\ ^Mfor all x(t) e G(t)}, then (l/y/co) ZteT Git) is S-convex.

Proof. Let x, y he in (1/^/co) J_t£T Git). Then there exist internal func-

tions xit) andyQ) such that (1/^/w) ^.teT xit)=x and (1/^/co) 2¡er>'(0=J-

Let S(Ä)=[2t6B(*(0AM Im CKO/V")]- Now S(0)=[O,O] and
S(T)=lx,y]. Thus the hypotheses of Loeb's theorem are satisfied and

for any given X there exists an internal set D ç F such that SiD)~

lil-X)x,il-X)y]. Therefore SiT-D)~lXx,Xy]. Define the function
hit) as

hit) = xit)   (Vf e D),

= yit)    OfteT-D).

Since xit), yit) are internal functions and D, T—D internal sets, hit) is

an internal function. Further, it can be easily seen that (l/^/co) 2<eI, ̂ (i)—

Xy+il-X)x.    Q.E.D.
Remark.    A variant of this theorem was first proved by Brown [2].

Let the radius of a set S, rad(S), be the radius of the smallest ball

containing S i.e., rad(S) = Inf,.ES/-(x) where rix) = {r\Bix, r)^S}. A set B

is said to be Q-convex if for all x,y e B and any X e (0, 1) there exists

a z eB such that z=Xx+il— X)y. The Q-convex hull of B, Q-coniB), is

the set of all internal star-finite convex combinations of points in B.

Note that if B is internal, Q-coniB) is internal.

Remark.    If B is internal, Q-coniB) is g-convex.

Theorem 3.3 Let B be S-convex; then for any y e Q-coniB) there

exists z e B such that z~y.

2 Note that we need only assume that, for all t e T, G(t) consists of finite vectors.

It can be easily seen that, since (G(r))ieî, is an internal family of internal sets of finite

vectors, it is uniformly bounded. I am indebted to the referee for this remark.

3 Under a different wording this theorem was proved by Brown [2].
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Proof. If B is S-convex, for any xi eB and X>.0, 2<_i X{ = l,v e *N,

there exists z e B such that z~2Li X^. We can prove this by induction.

By the definition of S-convexity the statement is true for v = 2. Let it

hold for v=n — l. We may suppose that 0<A„<1; otherwise there is

nothing to prove. Let *'=(2£? faùlQ -Xn). Since J^1 (A¿/(1 -Xn)) = I,
there exists r in B such that r~x'. However Xnxn + il —Xn)x' = J_ï=x X¿xt~

Xnxn+(l—Xn)r. Thus by the definition of S-convexity there exists zeB

such that z~ [A„*B+(1 -A„)r]~2íU ¿i*<-
Now any j e Q-coniB) can be written as 2i~i ¿t*<> 2¿=i ^¿= 1, *¿ e -ß-

From the above there exists z e B such that z~2;=i ^Xf—y.    Q.E.D.

We now consider a measure of nonconvexity, originally due to Starr

[5], although he worked only with compact sets. Let x e Q-coniS) and

let J£?(x, S) = {A\A^S, x e ß-con(^)}. Then the inner radius of S, RiS),

is Supœg.con(s) Inf4eJ? rad(/l). Note that if a particular set Sis Q-convex,

R(S) = 0. Thus the inner radius measures the degree of nonconvexity

of a set. We can now show that Theorem 2 can be extended to sets which

may be unbounded but whose degree of nonconvexity is bounded.

Theorem 4.    Let G be an internal correspondence such that

(3MeN)(Vt e F)[/?(G(i)) = M].

Then (1/^/co) *2teT Git) is S-convex.

Proof. We will show that for any y e g-con[(l/^/co) ~£teT Git)]

there exists x e il/^Jco) ~2teT Git) such thatyc^x. Now it is true by transfer

that the operators Q-con and (1/^/co) 2ieT commute, (see [1, p. 387]).

Thus there exists an internal function j(f) such that y{t) e (2-con(G(f))

and (1/^/cu) 2(6T y(t)=y. Thus, for all f in F, there exists an internal set

S(t)s G(t) such thaty(t) e Q-con(S(t)) and rad(S(t))^M. Since S(t)-y(t)

are standardly bounded sets for all f in F, an application of Theorem 2

gives us the fact that (1/^/co) ^teT (S(t)-y(t)) is S-convex. Thus

1(1 Uco) ~^teT S(t)]—y is S-convex which implies that (1/^/co) 2(6T S(t)

is S-convex. Finally, by an application of Theorem 4, we can see that there

exists a z e (l/^/co) 2(eî, s(0 such tnat z—y- since S(0 = G(0 (Vf e T),

the theorem is proved.    Q.E.D.

We can now say something about the average sum of sets.

Theorem 5. Let G satisfy the assumptions of Theorem 4. Then for any

y e Q-conlilIoj) ^teT Git)] there exists x e (1/co) ][teT G(0 su°b that

«>™\x-y\\~0.   '

Proof. We can easily see that for any S-convex set B,xe Q-coniB/yfco)

implies that there exists yeB/^to such that co1/2\\x— _y||—0. Suppose

not, i.e. for all yeB/y/co, co1/2||a:— y\\^0.  Multiplying throughout by
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yfco gives us a contradiction to the fact that B is S-convex. Applying

Theorem 4 proves the theorem.    Q.E.D.

III. Large but finite number of sets.    In [1], the following theorem due

to Shapley-Folkman and Starr is proved.

Theorem 6. Let F be a family inot necessarily finite) of compact

sets S such that, for some number M, /?(S)_iV/for all S e F. Then for any

finite subfamily F'^Fand any x e con ^¿s£f- S, there is a y e ^SeF, S such

that \\x—y\\ <MyJn, where n is the dimensionality of the space.

We can prove the following theorem.

Theorem 7.    Let {Git)}ieN be a sequence of nonempty subsets of Rn

having uniformly bounded inner radii, say less than M. Then

(Ve > 0)(3m 6 N)(Vn e N)lVx e con - Y G(t))
\ »£*../

X Uy e - 2 Git)) In = m => \\x - y\\ < e/Jn].

Proof.    Suppose the theorem is false; then

(Be > 0)(Vm e JV)(3n g N)\3x e con - Y Git))
\ n A       /

x (Vy 6 - 2 Gw) [n = ™=>\\*- y\\ = «/Vol-

Heiice by transfer the following sentence is a true statement about *U,

the nonstandard universe:

(3e > 0)(Vro e *N)(3n e *N)(3x e con - V Git))
V « iti       /

x ( Vv e - 2 Git)) [»|m*|x- j>|| ̂  e/V"]-

Choose v g *N—N, then there exists a> g *N—N, and

to

xG<2-con(l/co)]> G(f)
<=i

such that for all y in (1/co) 2«=i G(f), ||x—y||—e/^/co. This is a contra-

diction to Theorem 5.    Q.E.D.

Remark.    Note that Theorem 7 is a slightly  different version  of

Theorem 6. However it is in the former spirit that the Shapley-Folkman
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theorem is used in economics. We quote4 from Arrow-Hahn's analysis

of the relationship between the core and the competitive equilibria,

"(the) conclusion has little force for small economies. But if both sides

are divided by the number of members of the economy E, ■ ■ ■ the average

discrepancy • • • approaches zero for large economies."

Compactness of the sets, however, can be weakened even in the case

of Theorem 6. All we need to assume is that the sets S are closed and their

asymptotic cones are positively semi-independent. The latter requirement

guarantees that a finite sum of the sets S is closed, see Debreu [3, p. 23].

This, in turn, shows that the proof of Arrow-Hahn [1, p. 399], need

not be changed.
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