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AN EXTENSION  OF BROUWER'S  FIXED-POINT
THEOREM TO  NONACYCLIC,  SET

VALUED  FUNCTIONS

ROBERT  CONNELLY1

Abstract. If / is a set valued function defined on an «-ball

such that each f(x) is a subset of the «-ball, and the graph of/is

closed, then all that is needed to insure that there is a fixed point

(x ef(x)) is that the singularity sets not be too high dimensional.

I.e., the dimension of {x e Bn\H"(f(xy)^0} is ^n—q—2. Examples

are given to show that the dimension requirements are the best

possible. The proof involves defining an analogue of the retraction

in the "no retraction" proofs of the Brouwer theorem, and then

applying the Leray spectral sequence to the projection of the

graph of this retraction onto the «-ball.

The following is inspired by some recent results of D. G. Bourgin,

who has obtained similar results by somewhat different techniques.

We wish to prove an extension of the Brouwer fixed-point theorem

in which the function involved is set valued, and each/Lv) need not always

by acyclic.

Let X and y be topological spaces, and let 2r denote the set of all sub-

sets of Y. We say a function ff.X^-2   is upper semicontinuous iff

(a) 0 ^f(x) is closed in Y for all xeX, and

(b) if F<= Fis closed, thenf~\F) = {x e X\fix)C\F^ 0}is closed in AT.
It is easy to check that, if Y is compact, Hausdorff, then / is upper

semicontinuous if and only if the graph off, which is equal to

Tif) = {ix,y)eXx Y\yefix)},
is closed in Xx Y.

We make some standard definitions:

Rn = euclidean «-space and | | is the standard norm.

Bn = {x e Rn | |jc| ^ 1},       Bn = {x e Rn \ \x\ < 1},

S«-i = dBn = {x e Rn | |jc| = 1}.
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cl will denote the closure operation (in Bn). In the following, the cohom-

ology theory will be sheaf theoretic cohomology theory, and if coef-

ficients are not mentioned, it will be understood that the coefficient

sheaf will be the constant sheaf with each stalk isomorphic to some

fixed, nonzero L module, G. (In this case the cohomology will coincide

with, say, Alexander-Spanier or Cech cohomology in our applications.)

See Bredon [1] or Godement [3] for definitions, diirij, will denote the

cohomological dimension over L (see Bredon [1, p. 73] for a definition),

and in our case is always less than or equal to the covering dimension

(Godement [3, p. 236]). H* denotes reduced cohomology.

Theorem. Letf: 5"—>-2Zi" be an upper semicontinuous function. Suppose,

for q=0, 1, • • • , n—l,

(1) dim^ c1{jc e Bn \ H"ifix)) # 0} <: n - q - 2.

Then there is an x e Bn such that x efix).

If (1) were replaced by the stronger condition that each/Lv) be acyclic,

then the theorem would be a consequence of a theorem of Eilenberg

and Montgomery [2]. The proof below, however, is quite independent

of their results. See also O'Neill [4] and [5].

It is interesting to note that, if the dimension requirement is reduced

by 1, then there need not exist a fixed point (x e Bn such that x efix)).

E.g., if we regard Rk<^Rn, k<n, in the standard way ((x,, • • • , xk)-+

ixx, ■ ■ ■ , xk, 0, ■ ■ ■ , 0)) and thus Bk<= Bn, we define g : B"^2B" as follows:

Let ■n:Bn^>-Bk be projection onto the first k coordinates. If x e Bn—Bk,

gix)=the unique point in dBn on the ray from -n(x) through x. If x e Bk,

g(x) = TT~1(x)r\dBn. Define f(x)=-g(x). Clearly f:Bn->2Bn is upper

semicontinuous and has no fixed points, {x e Bn\H"(f(x))^O}=0

except when q=n—k — l, and

dim£ cl{x e Ê" \ H"^k-\f(x)) # 0}

= dim¿ Bk=k>n-in-k-l)-2 = k-l.

Proof of Theorem. Suppose x $f(x) for all x e Bn. We wish to

arrive at a contradiction. T(/) is closed and thus compact and r(/)c

BnxBn—à = {ix,y) eBnxBn\x7^y}. We wish to find a new set valued

function g:Bn-+2R"-¿" such that

(3) rig) is also compact,

(4) gix) = {x},ifxedB",

(5) gix) is homeomorphic to fix), if x e Bn.
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We define g as follows: Let r:BnxBn-A->dBn=Sn~1 be defined by

r(x, j)=the unique point on dB'1 on the ray from y through x. This is

the same function as used in the "no retraction" proofs of the Brouwer

theorem, and is easily shown to be continuous. Noter(x,y)=x, ifx e dB".

Define a continuous map

F:Bn X Bn - A-^Z?" - Bn

by
Fix,y) = rix,y) + \x - r(xty)\ (x - y).

/ \

FU, y) I |
•-1-;-•-•

\r(xx y) x y       I

Note if F(x,y)=Fix,y'), then y=y', unless xedBn, in which case

F(x, y)—x. Now define

gix) = Fix, fix)) = {Fix,y)\yefix)}.

It is easy to check g satisfies (4) and (5). To show (3) consider the

continuous   map   F:BnxBn — A-^B"x(Rn—En)  defined   by   F(x,y) =

ix, Fix,y)). Then F(rif))=r(g) is compact.
Thus, by (4) and (5), for each q,

{xeBn\ fí'ifix)) 9^0} = {xeBn\ /7a(g(x)) # 0}.

Let px : Tig)—>-B" be projection onto the first factor. We wish to show

Hn~l(T(g))=0. Note pxxix) is homeomorphic to gix), and px is a closed

map. We now apply the Leray spectral sequence to /?, (see Theorem 6.1,

p. 140 of [1]). We obtain a spectral sequence with F£a=/P(5n; Jf"ipx))

converging to Hp+I>irig)), where 3fq(px) is the sheaf generated by the

presheaf W^H^pî1^)). Since px\x)^g(x) is taut (see [1, p. 52]) we

obtain an isomorphism

■#•(*). ^ H°ipïXx)) « H°(g(x)).

Thus for (7>0 the stalks, Jf "ip\)x, are zero, except possibly on a closed

set, Aa=cl{x e B"\H''(g(x))^0}, whose dimension is _/i—<7—2. Since

AQ is closed we know (by 10.1, p. 51 of [1] or 4.9.1 of [3]), for q>0,

£«-!-«.<, = Hn-«-i(Bn. jftfjpj) ¿ Hn-"-\Av; Jf*(jh) | Aa) = 0.
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We have only E2~1,0 left to calculate. Let G denote the constant pre-

sheaf on Bn. Then the following exact sequence regarded as an exact

sequence of presheaves,

0 _> G -> H\px\%)) -* HXpx\W)) -* 0,

induces an exact sequence of sheaves and thus a long exact sequence in

cohomology. Let J^0ipx) denote the sheaf generated by the presheaf

defined by ^^-ff^pi1^)). Then

Hn-\Bn) -* Hn-\Bn; je°ipx)) -► Hn-\Bn; Jt\px))

is exact, and, as before, the stalks, J^°ipx)x, are zero except possibly on a

closed set, A0, of dimension ;_«—2. Thus, as before,

El-1-0 = Hn-\Bn; 3#*ipx)) «a Hn~\Bn).

Thus A"-1(r(g))=0.
Lastly we apply the functor, H"-1, to the following commutative

diagram :

{(x, x) | x e S"-*} = Tig | S»~i) —► Tig)

S»-l ^-i- Rn _ ¿"^ S"-1  X  R1

where p2 is projection onto the second factor, and p is a retraction. We

then obtain that p*p*:Hn-1iSr,-1)^-H"-1iTig)) is one to one, and we

finally get a contradiction.    □

Remark. Just as with Theorem 6 in [2] we can strengthen the theorem

to allow f.Bn-^2Rn, but insist that /(S"-1)^ Bn. The proof is as before

except that we extend the domains of r and F to the appropriate spaces

(BnxRn-{(x,y)\x^y,(x,y)eSn~1x(Rn-Bn)}, r(x,j) = last point on

Bn on the ray through x from y).

Addendum. The referee has pointed out that a strengthening of the

theorem is possible. Namely, in (1) we need only assume that the covering

dimension of every subset of {x e Bn\H"(f(x))^0} which is closed in

Bn is ^n-q-2. Under this hypothesis the fact that Hn~1(T(g))=0

follows directly from Theorem 1 of [6]. In fact the idea above is much

the same as in [6], except that Sklyarenko uses the following fact: Let

X be paracompact and M be a subset of X such that every subset of M

which is closed in X has covering dimension _£<*. (This is called the

relative dimension of M in A'.) Then if sé is any sheaf supported on M,

HP(X; sé)=0 forall/?>í/. The proof of this appears in [7].
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