A RELATIONSHIP BETWEEN CHARACTERISTIC VALUES AND VECTORS

E. T. BEASLEY, JR. AND P. M. GIBSON

ABSTRACT. It is shown that for all nonzero *n*-component column vectors α and β over a field F there exists a set Γ of *n*-square matrices over F of cardinality n^2-2n+2 such that, for each *n*-square matrix A over F, $A\alpha = \alpha$ or $A^T\beta = \beta$ if and only if 1 is a characteristic value of PA for every $P \in \Gamma$.

Let F be a field with unit 1, and A an n-square matrix over F. If all row sums of A or all row sums of A^T (the transpose of A) are 1, then A is a stochastic matrix. It is obvious that if A is stochastic then 1 is a characteristic value of PA for every n-square permutation matrix P. R. A. Brualdi and H. W. Wielandt [1] proved the converse. In this paper, it is shown as a corollary to a more general result that the n! permutation matrices can be replaced by a set of n-square matrices of cardinality n^2-2n+2 .

Let F^n be the set of all $n \times 1$ column vectors over F, and let α , $\beta \in F^n - \{0\}$. A set Γ of n-square matrices over F is called an (α, β) -set provided that, for each n-square matrix A over F, $A\alpha = \alpha$ or $A^T\beta = \beta$ if and only if 1 is a characteristic value of PA for every $P \in \Gamma$. An (α, β) -set Γ is minimal if no proper subset of Γ is an (α, β) -set. If $\alpha^T\beta = 0$, then α and β are orthogonal. Let ε_k be the vector in F^n with all components zero, except component k, which is equal to 1. Denote the vector in F^n with all components equal to 1 by ε . The characterization of stochastic matrices by Brualdi and Wielandt implies that the set of all n-square permutation matrices is an $(\varepsilon, \varepsilon)$ -set of cardinality n!. We shall show that minimal (α, β) -sets of cardinality n^2-2n+2 can be easily constructed for all $\alpha, \beta \in F^n-\{0\}$.

We first exhibit minimal (α, β) -sets for two particular choices of α and β . One of these is $\alpha = \beta = \varepsilon_1$, and the other is $\alpha = \varepsilon_1$ and $\beta = \varepsilon_n$.

LEMMA 1. For each positive integer n, the set

$$\Phi_n = \{\varepsilon_1 \varepsilon_1^T\} \cup \{\varepsilon_1 \varepsilon_1^T + \varepsilon_i \varepsilon_i^T \mid i, j = 2, 3, \cdots, n\}$$

of n-square matrices over F is a minimal $(\varepsilon_1, \varepsilon_1)$ -set.

Presented to the Society November 17, 1973; received by the editors March 28, 1973.

AMS (MOS) subject classifications (1970). Primary 15A18; Secondary 15A51.

[©] American Mathematical Society 1974

PROOF. Let $A = (a_{ij})$ be an *n*-square matrix over F. Since $\varepsilon_1^T \varepsilon_1 = 1$ and $\varepsilon_j^T \varepsilon_1 = 0$ for $j = 2, 3, \dots, n$,

$$A\varepsilon_1 = \varepsilon_1 \Rightarrow PA\varepsilon_1 = \varepsilon_1 \qquad \forall P \in \Phi_n,$$

 $A^T\varepsilon_1 = \varepsilon_1 \Rightarrow (PA)^T\varepsilon_1 = \varepsilon_1 \quad \forall P \in \Phi_n.$

Hence, if $A\varepsilon_1 = \varepsilon_1$ or $A^T \varepsilon_1 = \varepsilon_1$, then 1 is a characteristic value of PA for every $P \in \Phi_n$. Now suppose that 1 is a characteristic value of PA for every $P \in \Phi_n$. Since 1 is a characteristic value of $\varepsilon_1 \varepsilon_1^T A$, $a_{11} = 1$. Since 1 is a characteristic value of $(\varepsilon_1 \varepsilon_1^T + \varepsilon_2 \varepsilon_1^T)A$,

$$\det((\varepsilon_1 \varepsilon_1^T + \varepsilon_j \varepsilon_i^T) A - I) = 0, \quad i, j = 2, 3, \dots, n.$$

This implies that

(1)
$$\det\begin{bmatrix} a_{11} - 1 & a_{1j} \\ a_{i1} & a_{ij} - 1 \end{bmatrix} = 0, \quad i, j = 2, 3, \dots, n.$$

Therefore, since $a_{11}=1$, $a_{i1}a_{1j}=0$, i, j=2, 3, \cdots , n. Since $a_{11}=1$, this implies that $A\varepsilon_1=\varepsilon_1$ or $A^T\varepsilon_1=\varepsilon_1$. Hence, Φ_n is an $(\varepsilon_1, \varepsilon_1)$ -set. We now show that Φ_n is minimal. If

$$A = \varepsilon \varepsilon_1^T + \varepsilon_1 \varepsilon^T - 2\varepsilon_1 \varepsilon_1^T,$$

then $A\varepsilon_1 = A^T \varepsilon_1 \neq \varepsilon_1$, and equation (1) holds. This implies that $\Phi_n - \{\varepsilon_1 \varepsilon_1^T\}$ is not an $(\varepsilon_1, \varepsilon_1)$ -set. If $k, m \in \{2, 3, \dots, n\}$ and

$$A = \varepsilon_1 \varepsilon_1^T + \varepsilon_1 \varepsilon_k^T + \varepsilon_m \varepsilon_1^T,$$

then $A\varepsilon_1 \neq \varepsilon_1 \neq A^T \varepsilon_1$, $a_{11}=1$, and equation (1) holds except for i=m and i=k. This implies that

$$\Phi_n - \{\varepsilon_1 \varepsilon_1^T + \varepsilon_k \varepsilon_m^T\}, \quad k, m = 2, 3, \dots, n,$$

is not an $(\varepsilon_1, \varepsilon_1)$ -set. Therefore, Φ_n is a minimal $(\varepsilon_1, \varepsilon_1)$ -set.

LEMMA 2. Let $E_{1n} = \varepsilon_1 \varepsilon_1^T + \varepsilon_n \varepsilon_n^T$. For each integer n > 1, the set

$$\begin{aligned} \Psi_n &= \{E_{1n}, E_{1n} + \varepsilon_1 \varepsilon_n^T\} \\ &\qquad \cup \{E_{1n} + \varepsilon_1 \varepsilon_j^T, E_{1n} + \varepsilon_i \varepsilon_n^T, E_{1n} + \varepsilon_1 \varepsilon_j^T + \varepsilon_i \varepsilon_n^T \mid i, j = 2, 3, \cdots, n-1\} \end{aligned}$$

of n-square matrices over F is a minimal $(\varepsilon_1, \varepsilon_n)$ -set.

PROOF. Let $A = (a_{ij})$ be an *n*-square matrix over F. Then

$$A\varepsilon_{1} = \varepsilon_{1} \Rightarrow E_{1n}A\varepsilon_{1} = \varepsilon_{1}, \varepsilon_{i}\varepsilon_{j+1}^{T}A\varepsilon_{1} = 0, \qquad i, j = 1, 2, \dots, n-1,$$

$$A^{T}\varepsilon_{n} = \varepsilon_{n} \Rightarrow (E_{1n}A)^{T}\varepsilon_{n} = \varepsilon_{n}, (\varepsilon_{i}\varepsilon_{j+1}^{T}A)^{T}\varepsilon_{n} = 0, \qquad i, j = 1, 2, \dots, n-1.$$

Hence, if $A\varepsilon_1 = \varepsilon_1$ or $A^T \varepsilon_n = \varepsilon_n$, then 1 is a characteristic value of PA for every $P \in \Psi_n$. Suppose that 1 is a characteristic value of PA for every $P \in \Psi_n$. Since 1 is a characteristic value of $E_{1n}A$ and $(E_{1n} + \varepsilon_1 \varepsilon_n^T)A$,

(2)
$$\det \begin{bmatrix} a_{11} - 1 & a_{1n} \\ a_{n1} & a_{nn} - 1 \end{bmatrix} = 0,$$

(2)
$$\det \begin{bmatrix} a_{11} - 1 & a_{1n} \\ a_{n1} & a_{nn} - 1 \end{bmatrix} = 0,$$
(3)
$$\det \begin{bmatrix} a_{11} + a_{n1} - 1 & a_{1n} + a_{nn} \\ a_{n1} & a_{nn} - 1 \end{bmatrix} = 0.$$

Equations (2) and (3) imply that $a_{n1}=0$. Then equation (2) implies that $a_{11}=1$ or $a_{nn}=1$. Hence, if n=2, then $A\varepsilon_1=\varepsilon_1$ or $A^T\varepsilon_n=\varepsilon_n$. Suppose that n>2. We complete the proof that Φ_n is an $(\varepsilon_1, \varepsilon_n)$ -set by considering three cases.

Case 1. $a_{11}=1, a_{nn}\neq 1$. Since 1 is a characteristic value of $(E_{1n}+\varepsilon_1\varepsilon_i^T)A$,

(4)
$$\det\begin{bmatrix} a_{11} + a_{i1} - 1 & a_{1n} + a_{in} \\ a_{n1} & a_{nn} - 1 \end{bmatrix} = 0, \quad i = 2, 3, \dots, n - 1.$$

Since $a_{n1}=0$, $a_{11}=1$, and $a_{nn}\neq 1$, equation (4) implies that $a_{i1}=0$ for $i=2, 3, \cdots, n-1$. Therefore, $A\varepsilon_1 = \varepsilon_1$.

Case 2. $a_{11} \neq 1$, $a_{nn} = 1$. Since 1 is a characteristic value of $(E_{1n} + \varepsilon_j \varepsilon_n^T)A$,

(5)
$$\det \begin{bmatrix} a_{11} - 1 & a_{1j} & a_{1n} \\ a_{n1} & a_{nj} - 1 & a_{nn} \\ a_{n1} & a_{nj} & a_{nn} - 1 \end{bmatrix} = 0, \quad j = 2, 3, \dots, n - 1.$$

Since $a_{n1}=0$, $a_{11}\neq 1$, and $a_{nn}=1$, equation (5) implies that $a_{nj}=0$ for $j=2, 3, \cdots, n-1$. Hence, $A^T \varepsilon_n = \varepsilon_n$.

Case 3. $a_{11}=1=a_{nn}$. Since 1 is a characteristic value of

(6)
$$\det \begin{bmatrix} a_{11} + a_{i1} - 1 & a_{1j} + a_{ij} & a_{1n} + a_{in} \\ a_{n1} & a_{nj} - 1 & a_{nn} \\ a_{nj} & a_{nn} & a_{nn} - 1 \end{bmatrix} = 0$$

for $i, j=2, 3, \dots, n-1$. Therefore, since $a_{n1}=0$ and $a_{11}=1=a_{nn}$,

$$a_{i1}a_{nj}=0, \quad i,j=2,3,\cdots,n-1,$$

and we see that $A\varepsilon_1 = \varepsilon_1$ or $A^T \varepsilon_n = \varepsilon_n$.

We now show that Ψ_n is minimal. If

$$A = \sum_{k=2}^{n} \varepsilon_k \varepsilon_1^T + \sum_{m=2}^{n-1} \varepsilon_1 \varepsilon_m^T - \sum_{k=m=2}^{n-1} \varepsilon_k \varepsilon_m^T,$$

then it is not difficult to show that $A\varepsilon_1 \neq \varepsilon_1$ and $A^T\varepsilon_n \neq \varepsilon_n$, while equations (3) through (6) hold. This implies that $\Psi_n - \{E_{1n}\}$ is not an $(\varepsilon_1, \varepsilon_n)$ -set. If $A = \varepsilon_1 \varepsilon_n^T + \varepsilon_n \varepsilon_1^T$, then $A\varepsilon_1 \neq \varepsilon_1$ and $A^T\varepsilon_n \neq \varepsilon_n$, while equations (2), (4), (5), and (6) hold. This implies that $\Psi_n - \{E_{1n} + \varepsilon_1 \varepsilon_n^T\}$ is not an $(\varepsilon_1, \varepsilon_n)$ -set. If $m \in \{2, 3, \dots, n-1\}$ and $A = \varepsilon_1 \varepsilon_1^T + \varepsilon_m \varepsilon_1^T$, then $A\varepsilon_1 \neq \varepsilon_1$ and $A^T\varepsilon_n \neq \varepsilon_n$, while equations (2) through (6) hold except when i = m in equation (4). This implies that

$$\Psi_n - \{E_{1n} + \varepsilon_1 \varepsilon_m^T\}, \quad m = 2, 3, \dots, n-1,$$

is not an $(\varepsilon_1, \varepsilon_n)$ -set. If $k \in \{2, 3, \dots, n-1\}$ and $A = \varepsilon_n \varepsilon_k^T + \varepsilon_n \varepsilon_n^T$, then $A\varepsilon_1 \neq \varepsilon_1$ and $A^T \varepsilon_n \neq \varepsilon_n$, while equations (2) through (6) hold except when j=k in equation (5). This implies that

$$\Psi_n - \{E_{1n} + \varepsilon_k \varepsilon_n^T\}, \quad k = 2, 3, \dots, n-1,$$

is not an $(\varepsilon_1, \varepsilon_n)$ -set. If $k, m \in \{2, 3, \dots, n-1\}$ and $A = E_{1n} + \varepsilon_m \varepsilon_1^T + \varepsilon_n \varepsilon_k^T$, then $A\varepsilon_1 \neq \varepsilon_1$ and $A^T\varepsilon_n \neq \varepsilon_n$, while equations (2) through (6) hold except when i=m and j=k in equation (6). This implies that

$$\Psi_n - \{E_{1n} + \varepsilon_1 \varepsilon_m^T + \varepsilon_k \varepsilon_n^T\}, \quad k, m = 2, 3, \dots, n-1,$$

is not an $(\varepsilon_1, \varepsilon_n)$ -set. Hence, Ψ_n is a minimal $(\varepsilon_1, \varepsilon_n)$ -set.

LEMMA 3. Let α , β , γ , $\delta \in F^n - \{0\}$, and let P and Q be nonsingular matrices over F such that

(7)
$$P\gamma = \alpha, \quad P^T\beta = c\delta, \quad Q\alpha = \gamma, \quad Q^Tc\delta = \beta,$$

where $c \in F - \{0\}$. If Γ and Γ' are sets of n-square matrices over F such that

(8)
$$\Gamma' = \{ PBQ \mid B \in \Gamma \},$$

then Γ' is an (α, β) -set if and only if Γ is a (γ, δ) -set.

PROOF. Suppose that Γ is a (γ, δ) -set, and let A be an n-square matrix over F. Assume that

$$A\alpha = \alpha$$
 or $A^T\beta = \beta$.

Since (7) holds, this implies that $AP\gamma = Q^{-1}\delta$ or $A^TQ^T\delta = (P^T)^{-1}\delta$. Therefore,

$$(QAP)\gamma = \gamma$$
 or $(QAP)^T\delta = \delta$.

Hence, since Γ is a (γ, δ) -set, 1 is a characteristic value of B(QAP) for every $B \in \Gamma$. If G=PBQ, then B(QAP) and GA are similar matrices. Therefore, from (8) we see that 1 is a characteristic value of GA for every $G \in \Gamma'$. Reversing this sequence of steps, we see that $A\alpha = \alpha$ or $A^T\beta = \beta$ if 1 is a characteristic value of GA for every $G \in \Gamma'$. Therefore, Γ' is an (α, β) -set. A similar argument shows that Γ is a (γ, δ) -set if Γ' is an (α, β) -set.

It is convenient to express our principal results on minimal (α, β) -sets in two theorems. One of these applies when $\alpha^T \beta \neq 0$, and the other when $\alpha^T \beta = 0$.

THEOREM 1. Let α , $\beta \in F^n$ with $\alpha^T \beta \neq 0$. If $\{\gamma_i, \delta_i | i=1, 2, \dots, n-1\}$ is a subset of F^n such that $\{\alpha, \gamma_1, \gamma_2, \dots, \gamma_{n-1}\}$ and $\{\beta, \delta_1, \delta_2, \dots, \delta_{n-1}\}$ are independent while α and β are orthogonal to δ_i and γ_i , respectively, for $i=1, 2, \dots, n-1$, then

$$\Gamma = \{ (\alpha^T \beta)^{-1} \alpha \beta^T \} \cup \{ (\alpha^T \beta)^{-1} \alpha \beta^T + \gamma_i \delta_i^T \mid i, j = 1, 2, \cdots, n-1 \}$$
 is a minimal (α, β) -set.

PROOF. Let P be the n-square matrix with columns α , γ_1 , γ_2 , \cdots , γ_{n-1} , and let Q be the n-square matrix with columns β' , δ_1 , δ_2 , \cdots , δ_{n-1} , where $\beta' = (\alpha^T \beta)^{-1} \beta$. Then P and Q are nonsingular with

$$P\varepsilon_1 = \alpha$$
, $P^T\beta = (\alpha^T\beta)\varepsilon_1$, $Q^T\alpha = \varepsilon_1$, $Q(\alpha^T\beta)\varepsilon_1 = \beta$.

Since $\Gamma = \{PBQ^T | B \in \Phi_n\}$, it follows from Lemmas 1 and 3 that Γ is a minimal (α, β) -set.

Theorem 2. Let $\alpha, \beta \in F^n - \{0\}$ with $\alpha^T \beta = 0$. Suppose that

$$\{\gamma_i, \delta_i \mid i=1, 2, \cdots, n-1\}$$

is a subset of F^n such that $\{\alpha, \gamma_1, \gamma_2, \cdots, \gamma_{n-1}\}$ and $\{\beta, \delta_1, \delta_2, \cdots, \delta_{n-1}\}$ are independent, $\alpha^T \delta_1 = 1 = \beta^T \gamma_{n-1}$, and α and β are orthogonal to δ_{i+1} and γ_i , respectively, for $i = 1, 2, \cdots, n-2$. If $H = \alpha \delta_1^T + \gamma_{n-1} \beta^T$, then

$$\Gamma = \{H, H + \alpha \beta^T\}$$

$$\cup \{H + \alpha \delta_{i+1}^T, H + \gamma_i \beta^T, H + \alpha \delta_{i+1}^T + \gamma_i \beta^T \mid i, j = 1, 2, \dots, n-2\}$$

is a minimal (α, β) -set.

PROOF. Let P be the n-square matrix with columns α , γ_1 , γ_2 , \cdots , γ_{n-1} , and let Q be the n-square matrix with columns δ_1 , δ_2 , \cdots , δ_{n-1} , β . Then P and Q are nonsingular with

$$P\varepsilon_1 = \alpha$$
, $P^T\beta = \varepsilon_n$, $Q^T\alpha = \varepsilon_1$, $Q\varepsilon_n = \beta$.

Since $\Gamma = \{PBQ^T | B \in \Psi_n\}$, it follows from Lemmas 2 and 3 that Γ is a minimal (α, β) -set.

Let $\alpha, \beta \in F^n - \{0\}$. Clearly a subset $\{\gamma_i, \delta_i | i=1, 2, \dots, n-1\}$ of F^n exists satisfying the conditions of Theorems 1 or 2 according to whether $\alpha^T \beta \neq 0$ or $\alpha^T \beta = 0$. Hence we have the following.

COROLLARY 1. If $\alpha, \beta \in F^n - \{0\}$, there exists a minimal (α, β) -set of cardinality $n^2 - 2n + 2$.

If we let $\alpha = \beta = \varepsilon$ in this corollary we obtain the following.

COROLLARY 2. There exists a set Γ of n-square matrices over F of cardinality n^2-2n+2 such that, for each n-square matrix A over F, A is stochastic if and only if 1 is a characteristic value of PA for every $P \in \Gamma$.

Consideration of (α, β) -sets was motivated by Brualdi and Wielandt's remark [1] on the difficulty of finding sets of fewer than n! permutation matrices which could be used in their characterization of the n-square stochastic matrices. We have no general results on this problem, but we can show that every set of five 3-square permutation matrices is a minimal $(\varepsilon, \varepsilon)$ -set.

Let Γ be the set of all 3-square permutation matrices over F, excluding the identity matrix. Let $A = (a_{ij})$ be a 3-square matrix over F. Suppose that 1 is a characteristic value of PA for every $P \in \Gamma$. Then

$$\det(I - PA) = 0 \quad \forall P \in \Gamma.$$

If we multiply each matrix I-PA on the left by P^{T} , we obtain

(9)
$$\det(P - A) = 0 \quad \forall P \in \Gamma.$$

Let

$$\Delta = \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

If we add the second and third row of P-A to the first row of P-A, and then add the second and third column to the first column we see from (9) that

(10)
$$\det \begin{bmatrix} s & c_2 & c_3 \\ r_2 & p_{22} - a_{22} & p_{23} - a_{23} \\ r_3 & p_{32} - a_{32} & p_{33} - a_{33} \end{bmatrix} = 0$$

for every matrix $\begin{bmatrix} p_{22} & p_{23} \\ p_{33} & p_{33} \end{bmatrix}$ in Δ , where

$$s = 3 - \sum_{i,j=1}^{3} a_{ij},$$
 $c_k = 1 - \sum_{i=1}^{3} a_{ik},$ $r_k = 1 - \sum_{j=1}^{3} a_{kj},$ $k = 2, 3.$

Suppose that $s\neq 0$. Then (10) must hold for $c_2=c_3=0$, since any multiple of the first column can be added to any other column without changing the determinant. If $s\neq 0$ and $c_2=c_3=0$ in (10), we see that

$$a_{22}a_{33} - (a_{23} - 1)(a_{32} - 1) = 0,$$

$$a_{22}a_{33} - (a_{23} - 1)a_{32} = 0,$$

$$a_{22}a_{33} - a_{23}(a_{32} - 1) = 0,$$

$$(a_{22} - 1)a_{33} - a_{23}a_{32} = 0,$$

$$a_{22}(a_{33} - 1) - a_{23}a_{32} = 0.$$

It is not difficult to show that this system of equations has no solution. Hence, s=0.

Since s=0, from (10) we obtain a homogeneous system of five linear equations in the four unknowns c_2r_2 , c_2r_3 , c_3r_2 , c_3r_3 . Since the coefficient matrix for this system has rank four, we see that

$$r_2 = r_3 = 0$$
 or $c_2 = c_3 = 0$.

Therefore, since s=0, $A\varepsilon=\varepsilon$ or $A^T\varepsilon=\varepsilon$. Therefore, Γ is an $(\varepsilon, \varepsilon)$ -set. If any equation is removed from system (11), then the remaining system has a solution. Hence Γ is a minimal $(\varepsilon, \varepsilon)$ -set. It now follows from Lemma 3 that every set of five 3-square permutation matrices is a minimal $(\varepsilon, \varepsilon)$ -set.

We have determined by machine calculation that the 12 matrices

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

over GF(2) form a minimal $(\varepsilon, \varepsilon)$ -set. There also exist minimal $(\varepsilon, \varepsilon)$ -sets of 4-square permutation matrices over GF(2) of cardinality 13, but there exist none of cardinality less than 12.

REFERENCE

1. R. A. Brualdi and H. W. Wielandt, A spectral characterization of stochastic matrices, Linear Algebra and Appl. 1 (1968), no. 1, 65-71. MR 36 #6435.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, HUNTSVILLE, ALABAMA 35807 (Current address of P. M. Gibson)

Current address (E. T. Beasley): Department of Computer Science, Ohio State University, Columbus, Ohio 43210