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A FUNCTION SPACE INTEGRAL FOR A BANACH SPACE

OF FUNCTIONALS ON WIENER SPACE

G.   W.  JOHNSON  AND  D.  L.  SKOUG

Abstract. In an earlier paper the authors established the

existence of Cameron and Storvick's function space integral

Jq(F) for a class of finite-dimensional functionals F. Here we

consider a space A of not necessarily finite-dimensional functionals

generated by the earlier functionals. We show that A is a Banach

space and recognize A as the direct sum of more familiar Banach

spaces. We also show that the function space integral J*a(F)

exists for Fe A. In contrast we give an example of an F0 e A such

that /*eq(F0) does not exist.

0. Introduction. Cameron and Storvick introduced the "integral"

of the title in [2]. Insofar as possible, we adopt the definitions and notation

of [2]. "Integrals" closely related to [2] have been studied by others

including Babbitt, Beekman and Kallman, Cameron, Feldman, and

Nelson. The initial motivation for the study of these integrals is found in

the work of the physicist Feynman. For references see [2] and [I].

Let {a1; a2, • • • , xn, • ■ •} be a fixed complete orthonormal set of real

functions of bounded variation on [a, b] with ax(t) = (b—a)~1/2 the

normalized constant function. Given a finite subset {a, , • ■ • , a, } and a

complex-valued function fe Lx (Rm), let a functional F on Wiener space

C0[a, b] be defined by

(0.1) F(x) = f (J\W <**('), • • • >J\,« ¿*(0) •

(It will be convenient to denote the set of positive integers {ix, ■ • • , im}

by {(/, 1), (/, 2), • • • , (i, m)}.) Under the above assumptions, the present

authors established [3] the existence of the function space integral

Jq(F) for all real q^O. (For definition ofJq(F)see [2, pp. 533-534].) Here

we assume in addition that/e Lx(Rm). Given such an/, let

(0.2) 11/11 = ||/|L + (m\2-neT12 || f\\x.
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(The reason for the constant in (0.2) will become clear in §2 below.)

The space A will consist of functionals on C0[a, b] of the form £=2? Fj

where each £, has the form (0.1) and *2,i\\fi\\<°o. We will show that

there is a canonical way of writing the elements of A which is essentially

unique and then will define a norm TV on A in terms of this representation.

We then get that A is isometrically isomorphic to a countable direct sum

of spaces each of which is essentially ((LxnLx)(Rm), || • IL + || • \\x)

for some integer m. It will follow that (A, N) is a Banach space.

Finally we show that F e A implies the existence of Jqa(F) but not

Jsqeq(F). (For definitions, see [2, pp. 533-534].) The counterexample shows

rather strikingly how pathological the sequential function space integral

can be; the £0 e A such that Jl°q(F0) fails to exist is equivalent to 0.

1. The canonical representation. Let A0 be the set of all functionals

on C0[a, b] of the form (0.1) where ||/|| < oo. Let {£,} be a sequence from

A0 such that 2i\\fj\\ < °°- Given x e C0[a, b], let

oo

(1.1) F(x) = 2Fj(x).
i

Now for every X>0, WfW^ is an essential bound for \Fj(X~1/2x)\. This

is quite easily seen using a fundamental Wiener integration formula.

(Since the proof of this fact is essentially carried out as part of the proof

of Theorem 2.2 below we will omit the proof here.) It follows that for

every A>0, the series 2r F¡(X~ll2x) is absolutely convergent for a.e. x.

We let A denote the collection of all functionals £ arising as above from a

sequence {£,} from A0.

Given £= 2f Fs in A, one may add together all the £/s in the sum

which are based on exactly the same set of a's and get a new series

CO CO /    /•& /»& \

(1.2)    2 GiW = 2 m a"Wdjc«, • • •, «i.-xodxit))
1 1 \Ja Ja /

where 2T ||¿J = 2f II/,IK« and where

(1.3)        {(i,l),---,(i,ml)}^{(j,l),---,(j,m1)}   fori^j.

The new series still sums to £ because of the absolute convergence. We

show below that the representation (1.2) for £ under condition (1.3) is

unique up to the order of the sum and changes in g¡ on a set of measure

zero in R'"'. This result is a key step in the development. Once this is

done we unambiguously define N on A by

(1-4) N{F) = 2 kill,
3

and the following theorem is immediate.
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Theorem 1.1.    The space A is a normed linear space under the norm N.

Much of the present section concentrates on proving the uniqueness

of the representation (1.2) subject to (1.3). Part of the argument takes

place in Euclidean space. We use p (somewhat ambiguously) to refer to

Lebesgue measure on Rn for any n. The first lemma is an easy consequence

of Fubini's theorem.

Lemma 1.1. Let B^Rm+n satisfy p(Bc)<<x>; then for almost every

(a.e.) v e Rn, p(Bc(v)X co where B(v) denotes the v-section of B.

We need to consider sets which are the Cartesian product of some copies

of R with a set B satisfying piBc)< co. The next lemma along with Lemma

1.1 tells us that a.e. section of such a set is again such a set.

Let tçP={1, 2, •••,«} and let p=P\r. Our sets will have the form

BTxR0 wherepiBcT)<oo. (For example, let/i=4, t={1, 3}; thenBT^Rxx

R3 and BTxRp = {ivx, v2, v3, v¿):ivx, v3) eBT}.) We allow the possibilities

T=0,  T = £.

Lemma 1.2.    Let aç£ be such that t\ol^0 . Then for vx e Rx,

iBT X Rp)iva) = Brivrnx) X RP[X

where vTna denotes the projection ofvx into Rrnix.

We need a lemma insuring that the intersection of a finite number of sets

as in Lemma 1.2 has infinite measure.

Lemma 1.3. Let n be a positive integer. For i= 1,2, • • • ,m, let

t,££={1,2, •••,«}, let Pi=P\Ti, let AT^RT, with piA°)<cc, and let

Ei=AT XRP . Then E=f)™=x £t has infinite measure.

Proof. The result is clear for m=l. Now assume the result for m

sets and any dimension and examine the case of m +1 sets and any dimen-

sion (say n). If t, = t3 for some ij^j, then £¿n£j can be written as one set

of the type under consideration and we may apply the induction assump-

tion. So we may suppose that iy£j implies t,#t3. Also if any ri is empty,

then £¿ = Rn and the intersection may again be reduced to m sets. Now

choose i'0 £ {1, 2, • • ■ , m + l] such that t¡ has a minimal number of

elements. We may suppose i0=m + l. Then for l_/^m, Ti\rm+x^0.

Let vT e A, . We will show that £(ur ) has infinite measure for

a.e. v,     in A,    . But
'm+l 'm+l

EivT    ) = D E¿oT    ) =
v   Tm+l/ }    I       *v   Tm+l'

2=1
Pm+1 '

The result follows from Lemmas 1.1, 1.2, and the induction hypothesis.
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Theorem 1.2. The representation (1.2) of an FeA subject to (1.3) is

unique.

Proof. It suffices to show that 0 has a unique representation and, for

this, it suffices to examine a sum of the form (1.2) where g,7¿0 for ally"

and show that Gix)=-J.j°=x G ¡ix) is not the zero functional on C0[a, b],

Fory'= 1, 2, • • ■ , let rt be the set of positive integers {(/, 1), • • • , (j, m,)}

and let Vr. be the vector (viti, • ■ • , o},mj). We may arrange the sum so

that mx^m5 for j=2, 3, • • • . Since gx¿¿0 there exists e>0 and a set

AxÇ:Rr of positive measure such that \gi(VT)\ = e on Ax. Now

2rild?3IL<co and so there exists K^2 such that 2jt+i II&ILO/4.
Now p(M,)=Q where M,={Kfj e Rrf-lgÁK^Wg^J- Hence

w{xeC0[a,b]:\Gj(x)\> ||gj|L}

XmÁ    a;.i(0 dx(t), • • • ,    a;.    (f) dx(t)\ dx
JC0la.bl \Ja Ja /

(15) /iW2r r
\2.7T/ J—co J—co

■ exp{-K»?.i + • • • + vlmi)} dvitl ■ ■ ■ dvum¡,
= 0

where w denotes Wiener measure. It follows that w{xeC0[a,b]:

1.K+11 G} (x) I ̂  e/4}=0. The proof will be complete if we show that w(HK) >

0 where HK = {x e C0[a, b]:\Gx(x)\>s, \G2(x)\<e¡4K, ■ ■ ■ , \GK(x)\<

ejAK}. Let t= [J^, t¡. It suffices to show that p(L)>0 where Lsflf Li}

Lx = {VTe RT:\gx(VTi)\>e}, Lj = {V7 eRT:\gj(VT)\<el4K} for/=2, • • •, K,

since w(HK)>0 will follow from an argument as in (1.5). Note that for

j=2, • • • , K, Lj is a set of the type discussed in Lemma 1.3 since

g¡eLx(RT^). Now tj\tx9í0 for j=2, ■ ■ ■ , K and to show p(L)>0,

it suffices to show that p(L(VTi))=cc for a.e. VTi e Ax. However L(VTi)=

Ç\f=xLj(VT^ = C]^2Lj(VT^ and this set has infinite measure for a.e.

VTi e Ax by Lemmas 1.1, 1.2, and 1.3.

Theorem 1.1 now follows with N given by (1.4).

Let T={tx, t2, • • •} be an enumeration of the collection of all finite

subsets of the positive integers where t¡ = {íj, 1), • • • , (j, m ¡y). Associate

with t3- the Banach space ¿(^^((IjOi^)^,.), || • ||r/) where || • ||rj =

|| ■ ||0O+(7ni/27re)m,/2|| • Hj. Note that £(t,) is equivalent to

HLX nLx)iRT), || -II, + 11 -lli).

Then the set 2¿ 0 B(tj) of all sequences {gTj} such that 2; llgrjlr^ °° is a

Banach space under the norm ||{gri}||.B= 2; Wg^h,- The following theorem

is now quite clear from (0.2), (1.4), and Theorem 1.2.
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Theorem 1.3.    iA,N) is isometrically isomorphic to (2, © jB(t3-), || • ||B).

Proof. The appropriate correspondence sends {gT} into the functional

on C0[a, b] carrying x to Z?U*r,(J2 ««(i) «&(#), •-•, # «,.,»,<*) ¿x(f)).

2. /*"(£) and /f9(£).

Lemma 2.1. Suppose F is given by (0.1) withfe Lx(Rm). Then £}"(£)

andJ*n(F) exist for all Xe C+ = {X:Re X>0} and all real q^O and satisfy:

(2.1) ||/r(F)ll = (\X\l2ir)ml2 \\f\\x ̂  e^l2(ml2ner12 \\f\\x = e^121|/||,

(2.2) \\J?(F)\\ = (\q\l2ir)m/2 \\f\\x = e^!2(m\2-rteT12 |/|, ^ el«l/2 ||/||.

Proof. The existence of /|n(£) and /*"(£) (in fact Ik(F) and /„(£))

was established in [3, Theorems 1 and 2]. The first inequalities in (2.1)

and (2.2) are not explicitly stated in [3] but they follow easily from the

expressions for ||£t(£)|| and ||/,(£)|| in [3, pp. 421^122] and the fact that

for an Li-function h, ||«^"(/0lloo = ll^lli where J^ denotes the Fourier

transform. Now

\27t/    _ ¿sol        Xl-n]    J       \2neJ

and so the second inequalities in (2.1) and (2.2) are verified. The last

inequalities are clear by definition of ||/||.

Theorem 2.1. Let F e A. Then £f(£) and /£"(£) exist for all X e C+

and all real qj^Q and satisfy

(2.3) l|/*"(F)ll =i e|A|/2/V(F-)    and    ||J*n(E)ll ~=~ ewl2NiF).

Remarks, (i) To show that JqniF) exists it would suffice to show

[2, p. 534] that Jqn(F) is the weak operator limit of /¡£.i4(£) as />-*0+;

in fact, we show /gn(£) to be the strong operator limit of /fn(£) as

X-^-iq in C+.

(ii) Combining the explicit formulas in [3] with the work below we

actually can give explicit formulas for Jqn(F), F e A. One of the dif-

ficulties in studying the Cameron-Storvick theory has been the lack of

explicitly computable examples; the present paper should alleviate this

problem somewhat.

Proof. Suppose £ e A is given in its canonical representation by

(1.2). First we show that If(F) exists for X e C+. Let
"«

(2-4) LX(F) = 2 W,).
i
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By (2.1), 2ril/r(Gj)ll^el^/22rilc?,ll=e'A|/2iV(£). Hence £,(£) is an
operator satisfying ||LA(£)||^e|Al/2/V(£). Also the partial sums of (2.4)

are seen to converge uniformly to LX(F) on any bounded subset of C+

and, since these partial sums are analytic functions of A, LX(F) is analytic

in X. It remains to show that Lx(F)ip agrees with

f F(X~1/2x + Ç)y>(X-V2x(b) + f) dx   for X > 0.
JC0[a. 61

By Lemma 2.1 and the dominated convergence theorem

f        \f G,(rI/2x + 0 y>(X-1/2x(b) + f ) dx

OO        /•

= 2 G/A-1^ + |)v(A-1/2x(fc) + f) dx
X    JCola.bl

= 2 (C(G»(f) = (L,(F)r)(f).

(Ar(£)|y(A~1/2x(è) + |)|   serves  as  a   dominating   function.)   So   /fn(£)

exists and equals LA(£) and ||/f (£)||^e|;l|/2A^(£).

It remains to show Jqn(F) to be the strong operator limit of Iln(F) as

X-^y — iq. Let

(2.5) Lq(F) = 2 W,)-

By (2.2), Lq(F) is an operator and ||L9(£)||^e|a|/2/V(£). Further the

partial sums in (2.5) converge uniformly to £„(£) for q in any bounded

subset of R — {0}. Now fix q^O, f e L2(R) and let {Xn} be any sequence in

C+ such that Xn—>-—iq. Using Lemma 2.1, uniform convergence, and the

strong operator limit established in [3], we have

M

lim/;XF>=lim

= lim

lim 2 C(G>
M->oo j

M

lim2C(G>

M

= lim 2 OC,)? = L¿F)V-
JÍ-»co  i

Theorem 2.2. £Äe sequential integral need not exist for FeA. In

fact, there exists a functional £„ equivalent to 0 such that, for every X e C+,

IVq(F0) fails to exist. (Since /fq(£) clearly exists for the identically 0
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functional, this result shows that the sequential integral does not respect

equivalence classes.)

Proof.   We assume for convenience that [a, f/] = [0, 1], Let

g(vx, v2) = exp(u4),       v2 = 0,

= 0, otherwise.

Let oLjXit)=l and aJ2(f) = 21/2 sin(2/7rr),y'= 1, 2, • • • . Let

g ¿Pu v2) s 2_,g0>i, v2)

and

G Ax) = gJ j oc,tl(r) dxit), j a,,2(í) i/x(f)J

= 2-'g(x(l) - x(0), 21/2 (\ini2J7Tt) dx(o).

Finally, let £0=2r G3. Since ||g,||=0 for every j, F0eA and, in fact,

£0 is equivalent to 0.

To get the result, it suffices to exhibit a sequence {om} of partitions of

[0, 1] such that ||<rm||->0 but, for each m and each X e C+, /Im(£0) is not

even an operator. Let o-m=[0, \¡m, 2\m, • • • , 1]. Let X e C+. We will

show that /Im(£0) is not an operator on L2iR) by giving an L2-function

y>0 such that (/Im(£0)Vo) (£) is not in L2iR). Take ^o(") = M~3/4*r.i>oo>(M)-

Let | eR with £¿¿0. By definition [2, p. 530, equation (4.7)],

(Il-(Fo)fo)(¡)
\m/2 /*oo

S) J »HJ ?F3[z(<r""f' "*• ■ * * 'Vm'01)

■ vo(^m)expi - -í- 2 (*< ~ "¿-in rfi;i " ' dVm

-OT>ai2-'«(»--^l<-^(^))
- -^ 2 fa - r«-i)2) ̂i " '^m-

We will soon show that for certain values of j,

(2.6) 2-'g {vm - S, 21'2 2 (», - t^Jsin (^j )

equals 2~5 exp(fm— |)4, and for all other values ofy, (2.6) is the 0 function
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in ivx, • • • , vm). Once this is shown, we will have

(3m\m/2 feo ("co

^ im)\    c0exp[(^-a4]^J
2 77"/        J—co J—oo

• expi - -y 2 (vi - y¿-i)2) dvx- ■ ■ dv

-erf«\l/2 />co

3/4 exp (üm-a4-^(^-f)2

where c0 is a positive constant. It is now clear that (/lm(£o)Vo)(i) is not

an La-function of £.

It remains to verify the claim made for (2.6). Now

m

2 (vi - f¿-i)sin(2/7r//ffj)

is a linear combination a0£+axvx + - ■ ■+am_xvm_x of f, t;,, • • • , rOT_i. If

«0=«!=- • -=am-i=0, then (2.6) equals 2-*g(vm-S, 0)=2"> exp(»m- f)4.

This can happen, for example, when j=m, 2m, ■ • ■ . On the other

hand, if some one of a0, ax, ■ ■ • , am_x is not 0, then (2.6) is 0 except for

{(i>!, • • • , vm):a0Ç+axvx + - ■ ■+am_xvm_x=0}; but this set has measure 0
in£m.
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