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A  CHARACTERIZATION  OF  HILBERT  SPACE

RONALD E. BRÜCK, JR.

Abstract. A real Banach space E of dimension ^3 is an

inner product space iff there exists a bounded smooth convex subset

of E which is the range of a nonexpansive retraction.

De Figueiredo and Karlovitz [3] have shown that if F is a strictly

convex real finite-dimensional Banach space and dim F^3 then there can

exist no bounded smooth nonexpansive retract of E unless F is a Hubert

space. (A subset F of F is a nonexpansive retract of E if it is the range of

a nonexpansive retraction r : F->-F.) This is a consequence of their more

general result that if E is reflexive and a convex nonexpansive retract of E

has at a boundary point x0 a unique supporting hyperplane x0+H then

H is the range of a projection of norm 1. As they have pointed out, the

latter theorem fails in nonreflexive spaces (the unit ball of C[0, 1] fur-

nishes a counterexample). Nevertheless, their first result is true in general:

Theorem. Suppose E is a real Banach space with dimF_3. Then E

is an inner product space iff there exists a bounded smooth nonexpansive

retract of E with nonempty interior.

We separate out of the proof of the theorem a lemma, valid in all

real Banach spaces:

Lemma. Suppose F is a bounded smooth closed convex subset of a real

Banach space E and F has nonempty interior. Then given disjoint bounded

closed convex sets M and K in E with K compact, there exist p e E and

X>0such that K<=p + XFand ip+XF)nM= 0.

Proof of Lemma. Clearly the hypotheses and conclusions of the

lemma are invariant if K and M are translated by the same vector; thus

without loss of generality we may assume 0 e K. Similarly, we may also

assume 0 6 int F. Since K is compact and M is closed, a basic separation

theorem for convex sets assures the existence of a closed hyperplane H

which strictly separates M and K; that is, there exist weE*, c e R1
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such that H={x e E:w(x)=c} and

(1) 0 ^ sup{w(7) :yeK}<c< inf{vv(j) :y e M).

Since K and M are bounded, (1) also holds for functionals sufficiently

close to w (in the norm of £*). By the Bishop-Phelps theorem [1] the

support functionals of F are dense in E*; thus we may assume without

loss of generality that the functional w in (1) is a support functional

ofF.
If w supports F at x0, then H={x:w(x) = c} is the tangent hyperplane

to pF at px0, where p = c¡w(x0)>0. Let Ft=(l—t)px0+t ■ int(pF) for

/>0. Since int pF is convex and px0 is a boundary point of pF, it is easily

seen that F,«=F( if s<t.

The family {Ft:f >0} is an open cover of K. (In fact, since pF is smooth

at px0, it is easily verified that U«>o Ft is the open half-space {x: w(x)<c}

with boundary //which includes int(pF). By (1), Ais a subset of this open

half-space.)

Since the cover {F(:r>0} is linearly ordered by inclusion and K is

compact, there exists i>0 such that K<=Ft<=Cl(Ft). On the other hand,

MnCl(F,)=0 because M is a subset of the opposite open half-space

{x:w(x)>c}. Since C1(F,) = (1— t)px0+ptF, we may take p = (l— t)px0,

X=pt to reach the conclusion of the lemma.    Q.E.D.

Proof of Theorem. Necessity is trivial, since it is well known that

the closed unit ball of a Hubert space F is a smooth nonexpansive retract

of E. (In fact, every closed convex subset of F is a nonexpansive retract

of F—the proximity mapping is a nonexpansive retraction.)

To prove sufficiency, let Ex be any three-dimensional subspace of E,

F0 any two-dimensional subspace of Ex, and x0 any point of EX\E0. Fix

/?>0 and define

K = {x e E0:\\x\\ =/?},

M = {x e E: \\x - y\\ = ||*0 - y\\ for all y e K}.

Then K and M are bounded closed convex sets with K compact. We claim

that KnM^0.

Otherwise, by the lemma there exist/? e Fand A>0 such that K^p+XF

and (p+XF)n/¥= 0. If/is a nonexpansive retraction of E onto F, it is

easily verified that g :xh^Xf(X~~1(x —p))+p is a nonexpansive retraction

of E onto p + XF. In particular, for any y e K^p+XF we have g(y)=y

so

lls(*o) - y\\ - \\g(x0) - g(y)\\ = u*,, - y\\ ;

by definition, g(x0) therefore belongs to M. But g(x0) ep + XF since g

retracts F onto p + XF. This is a contradiction since (p + XF)C\M= 0.
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We have shown that KC\M^0 so that for each F>0 there exists

xR e E0 with

(2) \\xR - y\\ ^ \\x0 - y\\

for all y in F0 with ||j||_/?. Since (2) holds for y=0 in particular, the

set {xR:R>0} is bounded and (since dim F0=2) therefore relatively

compact. Hence there exists a sequence Rn-^-oo such that xR —kx^

for some x- in F0. It follows from (2) that

(3) |x. - y\\ < ||x0 - y\\    for all y e E0.

As in Kakutani [4], (3) implies the existence of a linear projection P of Ex

onto F0 with ||F|| = 1.

To summarize: Whenever F, is a three-dimensional subspace of Fand

F0 is a two-dimensional subspace of Ex, then there exists a projection P

of Fj onto F0 with ||F|| = 1. By Kakutani [4], F, must be an inner product

space. Finally, since every three-dimensional subspace of F is an inner

product space, E itself must be an inner product space.    Q.E.D.

Remark. The same technique can be used to prove the following

variant of Kakutani's theorem: If F is a real Banach space of dimension

_3 and every closed linear subspace of F of codimension 1 is the range of

a projection of norm 1, then E is an inner product space. It is only necessary

to show that every closed half-space in F is a nonexpansive retract of F;

and this can be done as in Brück [2, Theorem 5].
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