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ADDENDUM TO  "THE SCHUR MULTIPLICATOR
OF  METACYCLIC  GROUPS"

F.   RUDOLF  BEYL  AND   MICHAEL  R.   JONES

Abstract.    Every metacyclic group has a metacyclic group with

trivial multiplicator among its representing groups.

In [1] one of us computed the Schur multiplicator of the typical (finite)

metacyclic group

(1) G(M, N, r, X) = (a, b:aM = 1, b ■ a ■ b'1 = ar, bN = a*MW-»)

where rN= 1 mod M and X divides

(2) h(M, N, r) = AT1 ■ (M, r - 1) • (M, 1 + r + • • • + r^"1).

A Schur group is a group with trivial Schur multiplicator. The following

argument uses Schur's theory [2] of representing groups ( = Darstellungs-

gruppen) for an alternate computation of the Schur multiplicator

H2G(M, N, r, X).

Theorem. Every metacyclic group G has a metacyclic Schur group

G among its representing groups. If G = G(M, N, r, X) with rN = 1 mod M

and A\h(M, N, r), then s = r mod M can be found such that

(i) s1 = 1 mod M ■ X and thus G = G(M ■ X, N, s, 1) is defined and

(ii) there exists a central stem extension

Z¿ >^ G(M • X, N, s, 1) -» G(M, N, r, X)

which exhibits G as a representing group of G.

Hence H2G(M, N, r, \)fvZx.

Proof. We first find an integer s = r mod M such that (s— \)¡(M, s—\)

is prime to M; any such j can be used in the sequel. Let d be the

largest factor of M prime to (r—\)\(M, r— 1); set s = r+d- M. Clearly

h(M, N, s) = h(M, N, r)    and    G(M, N, s, X) «* G(M, TV, r, X).
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From

(M • X, s - 1) | (M • (M, s - 1), s - 1)

= (M, s - 1) ■ (M, (i - 1)/(M, s - 1)) = (M, 5-1)

we deduce (M • X, s—l) = (M, s—1).

We conclude from (2) that M- X\M ■ h\sN— 1, hence (i). Let

G=G(M ■ X, N, s, 1) be presented as in (1). The element c—aM is central

in G because [b, c]=bcb~1c~1=aM'is~1) = l. Since [G,G] is generated

by a<M**-i> =a<^'s-i>, it contains c. Thus the cyclic subgroup Zx

generated by c lies in [G, G] n center(G). The factor group G/Zx is

G(M, N, s, X)t*aG, which is immediate from the relations.

Recall from [1, proof of Theorem 4] that G can be presented with

two generators only; hence it is a Schur group. Hence, by Schur [2,

Satz IV, p. 100], the extension (ii) exhibits G as a representing group of

G and the kernel Zk is isomorphic to the multiplicator of G.
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