ADDENDUM TO "THE SCHUR MULTIPLICATOR OF METACYCLIC GROUPS"

F. RUDOLF BEYL AND MICHAEL R. JONES

ABSTRACT. Every metacyclic group has a metacyclic group with trivial multiplicator among its representing groups.

In [1] one of us computed the Schur multiplicator of the typical (finite) metacyclic group

(1)
$$G(M, N, r, \lambda) = (a, b : a^M = 1, b \cdot a \cdot b^{-1} = a^r, b^N = a^{M\lambda/(M, r-1)})$$

where $r^N \equiv 1 \mod M$ and λ divides

(2)
$$h(M, N, r) = M^{-1} \cdot (M, r - 1) \cdot (M, 1 + r + \cdots + r^{N-1}).$$

A Schur group is a group with trivial Schur multiplicator. The following argument uses Schur's theory [2] of representing groups (=Darstellungs-gruppen) for an alternate computation of the Schur multiplicator $H_2G(M, N, r, \lambda)$.

THEOREM. Every metacyclic group G has a metacyclic Schur group \widetilde{G} among its representing groups. If $G = G(M, N, r, \lambda)$ with $r^N \equiv 1 \mod M$ and $\lambda | h(M, N, r)$, then $s \equiv r \mod M$ can be found such that

- (i) $s^N \equiv 1 \mod M \cdot \lambda$ and thus $\tilde{G} = G(M \cdot \lambda, N, s, 1)$ is defined and
- (ii) there exists a central stem extension

$$Z_{\lambda} \longrightarrow G(M \cdot \lambda, N, s, 1) \twoheadrightarrow G(M, N, r, \lambda)$$

which exhibits \tilde{G} as a representing group of G.

Hence $H_2G(M, N, r, \lambda) \approx Z_{\lambda}$.

PROOF. We first find an integer $s \equiv r \mod M$ such that (s-1)/(M, s-1) is prime to M; any such s can be used in the sequel. Let d be the largest factor of M prime to (r-1)/(M, r-1); set $s=r+d\cdot M$. Clearly

$$h(M, N, s) = h(M, N, r)$$
 and $G(M, N, s, \lambda) \approx G(M, N, r, \lambda)$.

Received by the editors July 23, 1973.

AMS (MOS) subject classifications (1970). Primary 18H10, 20C25.

Key words and phrases. Metacyclic group, representing group, Schur multiplicator.

From

$$(M \cdot \lambda, s - 1) \mid (M \cdot (M, s - 1), s - 1)$$

= $(M, s - 1) \cdot (M, (s - 1)/(M, s - 1)) = (M, s - 1)$

we deduce $(M \cdot \lambda, s-1) = (M, s-1)$.

We conclude from (2) that $M \cdot \lambda | M \cdot h | s^N - 1$, hence (i). Let $\widetilde{G} = G(M \cdot \lambda, N, s, 1)$ be presented as in (1). The element $c = a^M$ is central in \widetilde{G} because $[b, c] = bcb^{-1}c^{-1} = a^{M \cdot (s-1)} = 1$. Since $[\widetilde{G}, \widetilde{G}]$ is generated by $a^{(M \cdot \lambda, s-1)} = a^{(M \cdot s-1)}$, it contains c. Thus the cyclic subgroup Z_{λ} generated by c lies in $[\widetilde{G}, \widetilde{G}] \cap \text{center}(\widetilde{G})$. The factor group $\widetilde{G}/Z_{\lambda}$ is $G(M, N, s, \lambda) \approx G$, which is immediate from the relations.

Recall from [1, proof of Theorem 4] that \tilde{G} can be presented with two generators only; hence it is a Schur group. Hence, by Schur [2, Satz IV, p. 100], the extension (ii) exhibits \tilde{G} as a representing group of G and the kernel Z_{λ} is isomorphic to the multiplicator of G.

REFERENCES

- 1. F. R. Beyl, *The Schur multiplicator of metacyclic groups*, Proc. Amer. Math. Soc. 40 (1973), 413-418.
- 2. I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, 69 HEIDELBERG, IM NEUENHEIMER FELD 9, WEST GERMANY

199 ELM DRIVE, TY-SIGN ESTATE, PONTYMINSTER, RISCA, MONMOUTHSHIRE, NP1 6PP, UNITED KINGDOM