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ON KAEHLER  MANIFOLDS SATISFYING THE AXIOM
OF ANTIHOLOMORPHIC 2-SPHERES

MINORU  HARADA

Abstract.    A   Kaehler   manifold   with   the   axiom   of  anti-

holomorphic 2-spheres is a complex space form.

1. Introduction. Let M be a Kaehler manifold with complex structure

J and Riemann metric g.

By aplane section we mean a 2-dimensional linear subspace of a tangent

space. A plane section 77 is called holomorphic (resp. antiholomorphic)

if Jtt=tt (resp. Jn is perpendicular to tt). The sectional curvature for a

holomorphic (resp. antiholomorphic) plane section is called holomorphic

(resp. antiholomorphic) sectional curvature.

A Kaehler manifold of constant holomorphic sectional curvature is

called a complex space form. It is well known that a complex space form

has constant antiholomorphic sectional curvature.

Conversely, in their recent paper [1], B. Y. Chen and K. Ogiue proved

that a Kaehler manifold with dimension ^3 and constant antiholomorphic

sectional curvature is a complex space form.

A Kaehler manifold M is said to satisfy the axiom of holomorphic

planes (resp. axiom of antihomomorphic planes) if, for each x e M and

each holomorphic (resp. antiholomorphic) plane 7r<= Tx(M), there exists

a 2-dimensional totally geodesic submanifold N such that x e N and

Tx(N)=tt. I. Mogi and K. Yano [4] proved that a Kaehler manifold with

the axiom of holomorphic planes is a complex space form.

Recently, B. Y. Chen and K. Ogiue [1] proved that a Kaehler manifold

with dimension _3 and the axiom of antiholomorphic planes is a complex

space form.

A Riemannian manifold M of (real) dimension _3 is said to satisfy

the axiom of 2-spheres if, for each x e M and each plane 77«= TX(M),

there exists a 2-dimensional umbilical submanifold N with parallel mean

curvature vector field such that x e N and Tx(N)=ir. D. Leung and

K. Nomizu [3] proved that a manifold with this property has constant

sectional curvature.
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Recently, in his paper [2], S. Goldberg introduced the axiom of holo-

morphic 2-spheres; a Hermitian manifold M is said to satisfy the axiom of

holomorphic 2-sphere if, for each x e M and each holomorphic plane

7T<= TX(M), there exists a 2-dimensional umbilical submanifold N with

parallel mean curvature vector field such that xeN and Tx(N)=tt. He

proved that a Kaehler manifold satisfying the axiom of holomorphic

2-spheres has constant holomorphic sectional curvature.

A Kaehler manifold is said to satisfy the axiom of antiholomorphic

2-spheres if, for each x e M and each antiholomorphic plane tt<= Tx(M),

there exists a 2-dimensional umbilical submanifold N with parallel mean

curvature vector field such that x e N and Tx(N)=w.

We shall prove the following theorem in this paper.

Theorem. Let M be a Kaehler manifold. If M satisfies the axiom of

antiholomorphic 2-spheres and if dim M 5:3, then M is a complex space

form.

The author expresses his hearty thanks to Professor K. Ogiue for his

valuable suggestions and encouragement.

2. Preliminaries. Let M be a Kaehler manifold with complex structure

J and Riemann metric g. We denote by R the curvature tensor field of M.

Then we have

(2.1) R(JX,JY) = R(X, Y),

(2.2) R(X, Y)JZ = JR(X, Y)Z.

Let K(X, Y) be the sectional curvature of M determined by orthonormal

vectors X and Y. Then we have

(2.3) K(JX,JY) = K(X, Y),

(2.4) K(X,JY) = K(JX, Y).

The following is easily seen.

Orthonormal vectors X and Y span an antiholomorphic section

if and only if X, Y and JX are orthonormal.

Let TV be a submanifold of M and let V and V be the covariant differ-

entiations on M and N respectively. Then the second fundamental form

a of the immersion is defined by

o(X, Y) = \XY-\XY,

where X and Y are vector fields tangent to N. a is a normal bundle valued
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symmetric 2-form on N. For a vector field f normal to N we write Vx£=

—AçX+DxÇ, where — ASX (resp. Dxg) denotes the tangential (resp.

normal) component of Vx f. The tensor fields a and A¡ are related by

(2.6) g(o(X, Y), Ö = s(^*, F).

Since /?(Z, y)f=VJtVrf-VFV_x-f-Vtx,F]f, we can obtain

(2 7)   R(X' Y)i = (V^)Z - ^XA;)Y
+ AD^ Y — AdtçX   (modulo normal component).

The mean curvature normal H of N in M is defined by the relation

(2.8) trace A( = 2g(S, H),

for all f normal to N. It is called parallel (in the normal bundle) if DH=0.

The surface N is umbilical in M if o-(Z, Y)=g(X, Y)H, i.e., if

(2.9) As=g(Ç,H)I=\(traceA,)I,

where / is the identity transformation.

An umbilical submanifold is totally geodesic if H vanishes.

3. Proof of theorem. Let x be an arbitrary point of M and let X

and Y be arbitrary orthonormal vectors in TX(M) which span an anti-

holomorphic section 77. Then, there is an umbilical submanifold N with

parallel mean curvature normal H such that ^eJY and Tx(N)=tt. Let U

be a normal neighborhood of x in N and for each y e Ulet £y be the normal

to N at y parallel (with respect to D) to JX along the geodesic in U from

x to y. Along each such geodesic, g(£, H) is a constant c, since f and H

are parallel. Therefore (2.9) implies that A¡=cl at every point of U.

Thus

VXA¡ = VYA( = 0,

DX£ = DF£ = 0   at*.

From them, together with (2.7), we obtain R(X, Y)JX=0 (modulo

normal component). In particular we have g(R(X, Y)JX, ^=0. Now

our theorem follows from the following.

Lemma ([1], [5]). If g(R(X, Y)JX, A")=0 for every orthonormal

X, Y, JX e TX(M) and for every point x of M, then M is a complex space

form, provided that dim A/_3.
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