ON PANOV'S THEOREM

PETER S. LANDWEBER¹

ABSTRACT. We give a simple proof of Panov's theorem, which determines the elements of $H_*(MU)$ mapped into $\pi_*(MU)$ by all operations s_ω for $\omega > 0$.

The purpose of this note is to present a simple proof of the main theorem of N. V. Panov's paper *Characteristic numbers in U-theory* [6]. In addition, Panov goes on to obtain complete results concerning the Chern numbers of (U, fr)-manifolds; see §4 of [6].

Let $MU_*(X)$ denote the complex bordism of a space or spectrum X. Then there are stable operations

$$s_{\omega}: MU_{\star}(X) \to MU_{\star}(X)$$

for each partition ω ; if ω is a partition of n ($|\omega|=n$) then s_{ω} lowers degrees by 2n ([4], [5]). We shall always assume that $|\omega|>0$ when dealing with the operations s_{ω} (for $\omega=0$, s_{ω} is the identity, which is of no interest here). An element $a \in MU_*(X)$ is called primitive if $s_{\omega}(a)=0$ for all ω .

We may regard $\pi_*(MU) = MU_*$ as a submodule of $H_*(MU)$ by means of the Hurewicz homomorphism. If H denotes the integral Eilenberg-Mac Lane spectrum and S the sphere spectrum, then

$$H_*(MU)/MU_* \approx MU_*(H/S).$$

Let $N_1 = \{a \in H_*(MU); s_{\omega}a \in MU_* \text{ for all } \omega\}$; then N_1/MU_* can be identified with the primitive elements in $MU_*(H/S)$. Panov gives a determination of N_1 .

THEOREM (PANOV). Let n>0. Then $(N_1)_{2n}/MU_{2n}$ is a cyclic group. Moreover,

- (a) for n odd, it has order 2 with generator $CP(1)^n/2$;
- (b) for n=2, it has order 12 with generators $CP(1)^2/4$ and CP(2)/3;
- (c) for n even and n>2, it has p-torsion iff $n \equiv 0 \mod(p-1)$. For such p write $k=n/(p-1)=p^m l$, (p,l)=1. If p is odd, the p-component has order p^{m+1} and generator $CP(p-1)^k/p^{m+1}$. If p=2, the 2-primary part has order

Received by the editors May 30, 1973.

AMS (MOS) subject classifications (1970). Primary 55B20.

Key words and phrases. Complex bordism theory, MU-characteristic numbers.

¹ Research supported in part by NSF Grant GP-21064.

 2^{m+2} and generator

$$CP(1)/2^{m+2} + H_3CP(1)^{n-3}/2$$

where H_3 is a suitable generator of MU_6 (e.g., $H_3=2CP(3)+H_{2,2}$).

REMARKS 1. In fact Buhštaber ([1], [2]) introduces a filtration

$$MU_* = N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq H_*(MU)$$

where N_{i+1}/N_i is the module of primitive elements in $H_*(MU)/N_i$. This explains the notation.

2. Let s_{ω} denote characteristic numbers in K-theory, in particular when ω is empty $s_{\omega} = Td$, the Todd genus. The following is Panov's Proposition 6.

PROPOSITION. N_1 consists of those elements in $H_*(MU)$ for which s_{ω} is integral for every $\omega > 0$.

Panov overlooked the following simple proof. First, if $a \in N_1$ and $\omega > 0$, then $s_{\omega}(a) = Tds_{\omega}(a) \in Z$ as desired. Conversely, let $a \in H_*(MU)$ have all $s_{\omega}(a)$ integral for $\omega > 0$. To show $a \in N_1$, fix $\omega_0 > 0$; we will show $s_{\omega_0}(a) \in MU_*$. In view of the Hattori-Stong theorem, it suffices to show $s_{\omega_1} \circ s_{\omega_0}(a) \in Z$ for all $\omega_1 \ge 0$. This is the same as $Td(s_{\omega_1} \circ s_{\omega_0}(a))$. Since $s_{\omega_1} \circ s_{\omega_0}(a)$ is a linear combination of s_{ω} 's with $\omega > 0$ ([4], [5]), this is clear.

- 3. One concludes that Panov could just as well use K-theory characteristic numbers. For example, at no point are the operations s_{ω} composed.
- 4. Panov does not pick his generator H_3 properly, since $s_3(H_{1,3})$ is 0 and not -4. A suitable choice is $H_3=2CP(3)+H_{2,2}$, since $s_3(H_3)=2$ and H_3 agrees with $H_{2,2}$ mod 2 (see Proposition 3 and the preceding paragraph in [6]).
- 5. The evident *BP* analogue of Panov's theorem is valid. One simply replaces CP(p-1) with v_1 , and H_3 with v_2 in the interesting case p=2 and n even, n>2.

We now outline our proof of Panov's theorem.

- (a) Show $(N_1)_{2n}/MU_{2n}$ is cyclic and has p-torsion iff $n \equiv 0 \mod (p-1)$.
- (b) For such p, write n=(p-1)k and $k=p^ml$ with (p,l)=1. Show that $CP(p-1)^k/p^{m+1}$ lies in $(N_1)_{2n}$, and unless p=2 and n is even and n>2 it generates the p-component.
- (c) If n is even and n>2, show that $P=CP(1)^n/2^{m+2}+H_3CP(1)^{n-3}/2$ lies in $(N_1)_{2n}$ and generates the 2-component of $(N_1)_{2n}/MU_{2n}$.

By proving (a) first, one avoids the need for Panov's splittings. (b) is included in Proposition 4 of [6]. Our main contribution is in the proof of (c).

At this point it is convenient to follow [6] and choose generators $\{H_n\}$ for MU_* , $H_n \in MU_{2n}$, such that $H_{p-1} = CP(p-1)$ and, if k > 0,

 $H_{p^{k+1}-1}$ is a nonzero multiple mod p of Stong's hypersurface ([3], [7])

$$H_{p^k,\ldots,p^k} \subset CP(p^k) \times \cdots \times CP(p^k)$$

(where p^k occurs p times). In particular, $H_3 \equiv H_{2,2} \mod 2$.

For a fixed prime p and $a \in N_1$, we say that a has $type \ \omega_0$ if $s_{\omega_0}(a) \not\equiv 0 \ \text{mod} \ p$ and $s_{\omega}(a) \equiv 0 \ \text{mod} \ p$ if $\omega > \omega_0$. Recall that one puts $\omega > \omega_0$ if $|\omega| > |\omega_0|$, or if $|\omega| = |\omega_0|$ and ω involves fewer terms than ω_0 ; see [3], [7]. For example, H_{p-1} has type 0; $H_{p^{k+1}-1}$ has type (p^k-1, \cdots, p^k-1) if k>0 (where p^k-1 occurs p times); and H_n has type (n) if n+1 is not a power of p. For the $H_{p^{k+1}-1}$ this is due to Stong ([3], [7]) if one computes with K-theory characteristic numbers. The Chern-Dold character makes it possible to carry over the computation to MU-characteristic numbers; see Proposition 2 of [6].

Notice that one has $s_{\omega}CP(1)^n=0$ if $\omega \neq (1, \dots, 1)$. As is customary, write $s_{\omega}=s^{k\Delta_1}$ if $\omega=(1, \dots, 1)$ with k 1's. Then we have

$$s^{k\Delta_1}CP(1)^n = \binom{n}{k} 2^k CP(1)^{n-k},$$

and so it is convenient to notice the following property of binomial coefficients. We write $v_p(r)$ for the highest exponent of p dividing the integer r.

LEMMA Let $n=p^ml$, (l,p)=1, where p is a prime. If $k \leq p^m$ then $v_n\binom{n}{k}=m-v_n(k)$.

PROOF. Simply notice that

$$\binom{n}{k} = \frac{p^m l}{k} \prod_{i=1}^{k-1} \frac{p^m l - i}{i}$$

and that $v_p(p^ml-i)=v_p(i)$ in this range.

PROOF OF (a). We show that in $(N_1)_{2n}/MU_{2n}$ the elements of order p must be multiples of $CP(p-1)^k/p$, where k=n/(p-1) is assumed to be integral. For let $a \in (N_1)_{2n}$, $pa \in MU_{2n}$, $a \notin MU_{2n}$. Write $a=\lambda CP(p-1)^k+\sum \lambda_I H_I$ with λ and λ_I rational (the H_I are monomials in the generators of MU_*). Since $pa \in MU_{2n}$, $p\lambda$ and $p\lambda_I$ are integral. An argument with types (compare [3, §14]) now shows that $p\lambda_I \equiv 0 \mod p$, hence all $\lambda_I \in Z$. Since

$$a = p\lambda(CP(p-1)^k/p) + \sum \lambda_I H_I,$$

a has the desired form.

PROOF OF (b). A computation using the lemma shows easily that, for $\omega > 0$, $s_{\omega}(CP(p-1)^k) \equiv 0 \mod p^{m+1}$, so $CP(p-1)^k/p^{m+1}$ belongs to N_1 .

For p>2 one computes that $CP(p-1)^k/p^{m+1}$ has type (p-1). This also holds for p=2 and m=0 (i.e., n odd). For p=2 and m>0 one finds that $CP(1)^n/2^{m+1}$ has type (1, 1); explicitly, $s_1(CP(1)^n/2^{m+1}) \equiv CP(1)^{n-1} \mod 2$, $s_{1,1}(CP(1)^n/2^{m+1}) \equiv CP(1)^{n-2} \mod 2$, and $s_{\omega}(CP(1)^n/2^{m+1}) \equiv 0 \mod 2$ if $\omega>(1, 1)$. These observations make up Proposition 4 of [6], hence we do not offer more details.

PROOF OF (c). Let p=2, n even and n>2. Write $n=2^ml$ with l odd, hence m>0. Using the MU-characteristic numbers of $H_{2,2}$ listed in Proposition 3 of [6], we learn that $s_1H_3 \equiv CP(1) \mod 2$, $s_{1,1}H_3 \equiv CP(1)^2 \mod 2$ and $s_mH_3 \equiv 0 \mod 2$ if $\omega > (1, 1)$. It follows that

$$s_{\omega}[CP(1)^{n}/2^{m+1} + H_{3}CP(1)^{n-3}] \equiv 0 \mod 2$$

for all $\omega > 0$, hence $P = CP(1)^n/2^{m+2} + H_3CP(1)^{n-3}/2$ belongs to N_1 .

The next task is to determine the type of P. We establish a little more: (d) $s_3(P) \not\equiv 0 \mod 2$; if m=1 then P has type (3), and if m>1 then P has type (1, 1, 1, 1).

To show that (d) implies (c), we must show that it is impossible to have $s_{\omega}(P) \equiv s_{\omega}(a) \mod 2$ for all $\omega > 0$ with $a \in MU_{2n}$. By an argument with types, this can happen only if P has type (1, 1, 1, 1), i.e., m > 1, and then a must be a linear combination of $CP(1)^{n-6}(H_3)^2$, $CP(1)^{n-3}H_3$, $CP(1)^{n-2}CP(2)$, and $CP(1)^n$. But then we would have $s_3(a) \equiv 0 \mod 2$, which violates (d).

PROOF of (d) First of all one computes directly that $s_3(P) = CP(1)^{n-3}$, hence $s_3(P) \not\equiv 0 \mod 2$. Thus it remains to consider $s_{\omega}(P)$ with $\omega > (3)$.

If $\omega \neq (1, \dots, 1)$, then

$$s_{\omega}(P) = \frac{1}{2} s_{\omega}(H_3 CP(1)^{n-3}).$$

Since $s_{\omega}(H_3)=0$ for dimensional reasons, $s_{\omega'}(H_3)\equiv 0 \mod 2$ if $\omega' \neq (1, \dots, 1)$ and $s_{\omega'}(CP(1)^{n-3})=0$ if $\omega'' \neq (1, \dots, 1)$ it follows easily that $s_{\omega}(P)\equiv 0 \mod 2$.

So we need only consider $s^{k\Delta_1}(P)$ for $k \ge 4$. One first shows that

$$s^{k\Delta_1}\{CP(1)^n + 2^{m+1}H_3CP(1)^{n-3}\} \equiv \binom{n}{k}2^kCP(1)^{n-k} \bmod 2^{m+3},$$

hence one wants to know when $v_2({}^{2ml}_k)+k \ge m+3$. E.g., if m=1 we want to know when $v_2({}^{2l}_k)+k \ge 4$; since $k \ge 4$ this always holds, hence $s^{k\Delta_1}(P) \equiv 0 \mod 2$ for $k \ge 4$ when m=1. This proves (d) for m=1.

Finally let m>1. Note that we may assume $1 \le k \le m+2 \le 2^m$. Then the lemma implies that

$$\nu_2\binom{2ml}{k}=m-\nu_2(k).$$

Hence $v_2({}^{2ml}_k)+k \ge m+3$ iff $k \ge v_2(k)+3$, and this fails for k=4, hence $s_{1,1,1,1}(M) \ne 0 \mod 2$; but it holds for k>4, which proves (d) for m>1. Q.E.D.

REFERENCES

- 1. V. M. Buhštaber, *The Chern-Dold character in cobordisms*. I, Mat. Sb. 83 (125) (1970), 575-595=Math. USSR Sb. 12 (1970), 573-594. MR 42 #8507.
- 2. —, Spectral sequences connected with the Chern-Dold character, Uspehi Mat. Nauk 26 (1971), 214-215.
- 3. P. E. Conner and E. E. Floyd, *The relation of cobordism to K-theories*, Lecture Notes in Math., no. 28, Springer-Verlag, New York and Berlin, 1966. MR 35 #7344.
- 4. P. S. Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94-110. MR 36 #2145.
- 5. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951=Math. USSR Izv. 1 (1967), 827-922. MR 36 #4561.
- 6. N. V. Panov, Characteristic numbers in U-theory, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1356-1376=Math. Izv. 5 (1971), 1365-1385.
- 7. R. E. Stong, *Notes on cobordism theory*, Mathematical Notes, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903