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ON PANOV’S THEOREM

PETER S. LANDWEBER!

ABSTRACT. We give a simple proof of Panov’s theorem, which
determines the elements of H,(MU) mapped into =,(MU) by
all operations s,, for ©>0.

The purpose of this note is to present a simple proof of the main theorem
of N. V. Panov’s paper Characteristic numbers in U-theory [6]. In addition,
Panov goes on to obtain complete results concerning the Chern numbers
of (U, fr)-manifolds; see §4 of [6].

Let MU,(X) denote the complex bordism of a space or spectrum X.
Then there are stable operations

S0: MU (X) > MU, (X)

for each partition w; if w is a partition of n (Jw|=n) then s, lowers degrees
by 2n ([4], [5]). We shall always assume that |w| >0 when dealing with the
operations s, (for w=0, s,, is the identity, which is of no interest here).
An element a € MU, (X) is called primitive if s,(a)=0 for all w.

We may regard 7, (MU)=MU, as a submodule of H,(MU) by means
of the Hurewicz homomorphism. If H denotes the integral Eilenberg-
Mac Lane spectrum and S the sphere spectrum, then

H(MU)MU, ~ MU,(H|S).

Let Ny={a€ H,(MU); s,a € MU, for all w}; then N;/MU, can be iden-
tified with the primitive elements in MU, (H/S). Panov gives a determina-
tion of N,.

THEOREM (PANoV). Let n>0. Then (N,)s,/MU,, is a cyclic group.
Moreover,

(a) for n odd, it has order 2 with generator CP(1)"(2;

(b) for n=2, it has order 12 with generators CP(1)?/4 and CP(2)/3;

(c) for n even and n>2, it has p-torsion iff n=0 mod(p—1). For such p
write k=n[(p—1)=p™l, (p,1)=1. If p is odd, the p-component has order
p"* and generator CP(p—1)t[p™*1. If p=2, the 2-primary part has order
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2™+2 and generator
CP(1)[2™+® 4+ H,CP(1)"*|2

where Hy is a suitable generator of MUy (e.g., H;=2CP(3)+ H, ).
REMARKs 1. In fact BuhS$taber ([1], [2]) introduces a filtration
MU,= Ny= N, N,<--- < H(MU)

where N,,,/N, is the module of primitive elements in H,(MU)/N,. This
explains the notation.

2. Let s, denote characteristic numbers in K-theory, in particular
when o is empty s,=7d, the Todd genus. The following is Panov’s
Proposition 6.

PROPOSITION. N, consists of those elements in H (MU) for which s,
is integral for every w>0.

Panov overlooked the following simple proof. First, if a € N; and >0,
then s,(a)=7Tds,(a) e Z as desired. Conversely, let a € H,(MU) have
all s,(a) integral for w>0. To show a e N, fix wy>0; we will show
So,(@) € MU,. In view of the Hattori-Stong theorem, it suffices to show
Sw, © Sw,(@) € Z for all »,;20. This is the same as Td(s,,, ° 5,,(@)). Since
Sw, © Su, 18 @ linear combination of s,,’s with w>0 ([4], [S]), this is clear.

3. One concludes that Panov could just as well use K-theory charac-
teristic numbers. For example, at no point are the operations s,, composed.

4. Panov does not pick his generator H; properly, since s3(H,,3) is O
and not —4. A suitable choice is H;=2CP(3)+ H, ,, since s3(H;)=2 and
H, agrees with H, , mod 2 (see Proposition 3 and the preceding paragraph
in [6]).

5. The evident BP analogue of Panov’s theorem is valid. One simply
replaces CP(p—1) with v,, and H; with v, in the interesting case p=2
and n even, n>2.

We now outline our proof of Panov’s theorem.

(@) Show (Ny)a,/MUs, is cyclic and has p-torsion iff n=0 mod(p—1).

(b) For such p, write n=(p—1)k and k=p™l with (p,l)=1. Show that
CP(p—1)t[p™+! lies in (Ny)z,, and unless p=2 and n is even and n>2 it
generates the p-component.

(¢) If n is even and n>2, show that P=CP(1)"/2"+2*4 H,CP(1)"~3[2
lies in (N,),, and generates the 2-component of (Ny)en,/MU,,.

By proving (a) first, one avoids the need for Panov’s splittings. (b) is
included in Proposition 4 of [6]. Our main contribution is in the proof
of (c).

At this point it is convenient to follow [6] and choose generators
{H,} for MU,, H,e MU,,, such that H, ,=CP(p—1) and, if k>0,
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H +1_, is a nonzero multiple mod p of Stong’s hypersurface ([3], [7])
Hp ... < CP(p*) x - -+ x CP(p"

(where p* occurs p times). In particular, Hy=H, , mod 2.

For a fixed prime p and a € N, we say that a has type o, if s, (a)#
Omod p and s,(@)=0mod p if w>w, Recall that one puts w>w, if
|w]>|w,l, or if |w|=]|w,| and w involves fewer terms than wo, see [3],
[7]. For example, H, , has type 0; H,x+_; has type (p*—1, -, =1
if k>0 (where p*—1 occurs p tlmes), and H, has type (n) if n+1 isnota
power of p. For the H 1, this is due to Stong ([3], [7]) if one computes
with K-theory characteristic numbers. The Chern-Dold character makes
it possible to carry over the computation to M U-characteristic numbers;
see Proposition 2 of [6].

Notice that one has sa,CP(l)” 0 if w#(1,---,1). As is customary,
write s, =s*A1if w=(1, - - -, 1) with k I’s. Then we have

SICP(1)" = ( Z)Z"CP(I)”"‘,

and so it is convenient to notice the following property of binomial
coefficients. We write »,(r) for the highest exponent of p dividing the integer
r.

LemMA Let n=p™l, (I,p)=1, where p is a prime. If k=p™ then
vp(;ct)=m—vp(k)'

Proor. Simply notice that

n p k ml — l
(k) k Ei[
and that v, (p™/—i)=v,(i) in this range.

Proor OF (a). We show that in (N,),,/MU,, the elements of order p
must be multiples of CP(p—1)*/p, where k=n[(p—1) is assumed to be
integral. For let a € (Ny),,, pa € MU,,, a ¢ MU,,. Write a=ACP(p—1)*+
> A H; with 1 and 2; rational (the H; are monomials in the generators
of MU,). Since pa € MU,,, pA and pi; are integral. An argument with
types (compare [3, §14]) now shows that pA;=0 mod p, hence all 1; € Z.
Since

a = pA(CP(p — 1)*/p) + > AHy,

a has the desired form.
PROOF OF (b). A computation using the lemma shows easily that, for
>0, 5,(CP(p—1))=0mod p™*1, so CP(p—1)¥/p™*1 belongs to N;.
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For p>2 one computes that CP(p—1)¢/p™*! has type (p—1). This also
holds for p=2 and m=0 (i.e., n odd). For p=2 and m>0 one finds that
CP(1)"/2™+1 has type (1, 1); explicitly, s,(CP(1)"*/2"+)=CP(1)*"! mod 2,
5.1(CP(1)*)2")=CP(1)"2mod 2, and s,(CP(1)*/2")=0mod2 if
> (1, 1). These observations make up Proposition 4 of [6], hence we do
not offer more details.

ProOF OF (c). Let p=2, n even and n>2. Write n=2"/ with / odd,
hence m>0. Using the MU-characteristic numbers of H,, listed
in Proposition 3 of [6], we learn that s,H;=CP(1) mod 2, s, H;=
CP(1)? mod 2 and s,H;=0 mod 2 if o> (1, 1). It follows that

s,[CP()"2™ + H,CP(1)"*] = 0 mod 2

for all w>0, hence P=CP(1)*/2™+2+ HyCP(1)"~3/2 belongs to N;.

The next task is to determine the type of P. We establish a little more:

(d) s3(P)#£0mod 2; if m=1 then P has type (3), and if m>1 then P
has type (1,1, 1, 1).

To show that (d) implies (c), we must show that it is impossible to
have s,(P)=s,(a) mod 2 for all >0 with a € MU,,. By an argument
with types, this can happen only if P has type (1, 1, 1, 1), i.e., m>1, and
then a must be a linear combination of CP(1)"¢(H,)?, CP(1)"3H,,
CP(1)"2CP(2), and CP(1)". But then we would have s3(a)=0 mod 2,
which violates (d).

Proor ofF (d) First of all one computes directly that s3(P)=CP(1)"~3,
hence s3(P)#£0 mod 2. Thus it remains to consider s,(P) with o> (3).

If w#(1,---, 1), then

So(P) = §s,(H;CP(1)"™).

Since s,(H;)=0 for dimensional reasons, s,.(H;)=0mod2 if w's
(1,---,1) and s, (CP(1)"3)=0 if w"5(1,---,1) it follows easily
that s,(P)=0 mod 2.

So we need only consider s*21(P) for k=4. One first shows that

s*AUCP(1)" 4 2™ H,CP(1)**} = (Z)zkcpa)"—" mod 2™*3,

hence one wants to know when »,(*})+k=m+3. E.g., if m=1 we
want to know when »,(¥)+k=4; since k=4 this always holds, hence
s¥A1(P)=0 mod 2 for k=4 when m=1. This proves (d) for m=1.

Finally let m>1. Note that we may assume 1<k=<m+2=2™. Then

the lemma implies that
72(2211) = m — vy(k).
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Hence v,(*¢)+k=m+3 iff k=w,(k)+3, and this fails for k=4, hence
$1.1,1.1.(M)#0 mod 2; but it holds for k>4, which proves (d) for m>1.
Q.E.D.
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