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ON  PANOV'S  THEOREM

PETER S.   LANDWEBER1

Abstract. We give a simple proof of Panov's theorem, which

determines the elements of Ht(MU) mapped into Trt(MU) by

all operations sa for cu>0.

The purpose of this note is to present a simple proof of the main theorem

of N. V. Panov's paper Characteristic numbers in U-theory [6]. In addition,

Panov goes on to obtain complete results concerning the Chern numbers

of (i/,/r)-manifolds; see §4 of [6].

Let MU*(X) denote the complex bordism of a space or spectrum X.

Then there are stable operations

sw:MUjf(X)^MUJt(X)

for each partition co; if co is a partition of« (\co\=n) then sa lowers degrees

by 2« ([4], [5]). We shall always assume that |co|>0 when dealing with the

operations sm (for co=0, sra is the identity, which is of no interest here).

An element a e MU^(X) is called primitive if sa(a)=0 for all co.

We may regard Trjf(MU) = MUJe as a submodule of H*(MU) by means

of the Hurewicz homomorphism. If H denotes the integral Eilenberg-

Mac Lane spectrum and S the sphere spectrum, then

H^MUyMU* e* MU*(H¡S).

Let Nx = {a e H*(MU); saa e MU* for all co}; then NJMU* can be iden-

tified with the primitive elements in MU* (H/S). Panov gives a determina-

tion of Nx.

Theorem (Panov). Let n>0. Then (Nx)2JMU2n is a cyclic group.

Moreover,

(a) for n odd, it has order 2 with generator CP(l)n¡2;

(b) forn = 2, it has order 12 with generators CP(l)2/4 and CP(2)¡3;

(c) for n even and «>2, it has p-torsion iff n = 0 mod(p— 1). For such p

write k=n/(p—l)=p'"l, (p,l)=\. If p is odd, the p-component has order

p>»+i and generator CP(p—l)k/pm+1. If p = 2, the 2-primary part has order
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2m+2 and generator

CF(l)/2m+2 + H3CP( l)"-3/2

where H3 is a suitable generator of MUe (e.g., H3=2CP(3)+H22).

Remarks 1.   In fact Buhstaber ([1], [2]) introduces a filtration

MU* = JV0 <= Nx e A/2 <z - - • <= //+(MfJ)

where /Vi+1//Yf is the module of primitive elements in H^(MU)¡Ni. This

explains the notation.

2. Let im denote characteristic numbers in AT-theory, in particular

when to is empty sa = Td, the Todd genus. The following is Panov's

Proposition 6.

Proposition. Nx consists of those elements in H%(MU) for which sm

is integral for every co>0.

Panov overlooked the following simple proof. First, if a e Nx and w>0,

then s01(a)=Tds01(a) eZ as desired. Conversely, let ae H*(MU) have

all sa(a) integral for eu>0. To show a e Nx, fix co0>0; we will show

sm0(a) e Aíí/„. In view of the Hattori-Stong theorem, it suffices to show

sa>1 ° -^„(a) eZ for all a)1=0. This is the same as Td(sai ° s^a)). Since

sa1 ° sa>0 is a linear combination of sm's with a»>0 ([4], [5]), this is clear.

3. One concludes that Panov could just as well use A"-theory charac-

teristic numbers. For example, at no point are the operations sm composed.

4. Panov does not pick his generator H3 properly, since s3(H13) is 0

and not —4. A suitable choice is H3=2CP(3) + H22, since s3(H3)=2 and

H3 agrees with H2 2 mod 2 (see Proposition 3 and the preceding paragraph

in [6]).

5. The evident BP analogue of Panov's theorem is valid. One simply

replaces CP(p-l) with vx, and H3 with v2 in the interesting case p — 2

and n even, «>2.

We now outline our proof of Panov's theorem.

(a) Show (Nx)2JMU2n is cyclic and has p-torsion iffn = 0 mod(/>—1).

(b) For such p, write n=ip—l)k and k=pml with (p, l)=l. Show that

CP(p—l)klpm+1 lies in (Nx)2n, and unless p=2 and n is even and n>2 it

generates the p-component.

(c) If n is even and n>2, show that P=CP(l)nl2m+2 + H3CP(l)"-3[2

lies in (Nx)2n and generates the 2-component of (Nx)2JMU2n.

By proving (a) first, one avoids the need for Panov's splittings, (b) is

included in Proposition 4 of [6]. Our main contribution is in the proof

of (c).

At this point it is convenient to follow [6] and choose generators

{//„} for MU*, HneMU2n, such that HP_x = CP(p-l) and, if ic>0,
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Hj,t+i_x is a nonzero multiple mod/7 of Stong's hypersurface ([3], [7])

///...../c CP(pk)x ■•■ x CP(pk)

(wherepk occurs/? times). In particular, H3 = H22 mod 2.

For a fixed prime p and ae Nx, we say that a has (y/?e co0 if sa (a)^

0 mod/7 and im(tf) = 0 mod/? if «>«„. Recall that one puts eo>cu0 if

|eo|>|co0|, or if |co| = |co0| and co involves fewer terms than a>0; see [3],

[7]. For example, Hv_x has type 0; HPk+i_x has type (/»*—1, • • • ,/>*—1)

if A:>0 (where/?*—1 occurs/? times); and //„ has type (n) if tj + 1 is not a

power of/?. For the HPk+i_x this is due to Stong ([3], [7]) if one computes

with /^-theory characteristic numbers. The Chern-Dold character makes

it possible to carry over the computation to M£/-characteristic numbers;

see Proposition 2 of [6].

Notice that one has smCP(l)n=0 if co^(l, • • • , 1). As is customary,

write sa=skAl if w = (l, •••,!) with k Vs. Then we have

s*AlCP(l)" = (n )2*CP(1)"-*,

\kl

and so it is convenient to notice the following property of binomial

coefficients. We write vp(r) for the highest exponent of/? dividing the integer

r.

Lemma Let n=pml, (l,p)=l, where p is a prime. If k^pm then

rvil)=m-vvik).

Proof.    Simply notice that

(\ „ml k—1   „ml :
n\       P  I j—r p  l — I

k)=T\4~T~
and that vvipml—i)=vPii) in this range.

Proof of (a). We show that in (Nx)2JMU2n the elements of order /?

must be multiples of CP(p—l)k/p, where k=nj(p—l) is assumed to be

integral. For let a e (Nx)2n, pa e MU2n, a £ MU2n. Write a=XCP(p- \f+

2 XjHj with X and X¡ rational (the H¡ are monomials in the generators

of MU%). Since pa e MU2n, pX and pXj are integral. An argument with

types (compare [3, §14]) now shows that/?Az = 0 mod/?, hence all X1 eZ.

Since

a = PX(CP(p - iflp) + 2 XtHj,

a has the desired form.

Proof of (b). A computation using the lemma shows easily that, for

w>0,  jm(CP(/7-l)*)=.0mod/>m+1,  so  CP(p-l)k/pm+1 belongs to Nx.
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For /?>2 one computes that CP(p—l)kjpm+1 has type (p— 1). This also

holds for/? = 2 and m=0 (i.e., n odd). For/?=2 and m>0 one finds that

CF(l)"/2m+1 has type (1, 1); explicitly, ̂ (CPO^^^CPil)"-1 mod 2,
ii,i(CP(l)"/2m+1)=-CP(l)'1-2mod2, and íú)(CF(l)"/2m+1)¿0mod2 if

ío>(1, 1). These observations make up Proposition 4 of [6], hence we do

not offer more details.

Proof of (c). Let /? = 2, n even and n>2. Write n=2ml with / odd,

hence w>0. Using the M {/-characteristic numbers of H22 listed

in Proposition 3 of [6], we learn that s XH3 = CP il) mod 2, sxxH3 =

CP(l)2 mod 2 and smH3=0 mod 2 if co>( 1, 1). It follows that

sJCP(l)72m+I + H3CP(l)n~3] = 0 mod 2

for all co>0, hence F=CF(l)72m+2 + //3CF(l)n-3/2 belongs to Nx.

The next task is to determine the type of P. We establish a little more :

(d) s3(P)^áO mod 2; if m=l then P has type (3), and if m>l then P
has type (1,1,1,1).

To show that (d) implies (c), we must show that it is impossible to

have su>iP)=sa(a) mod 2 for all co>0 with a e MU2n. By an argument

with types, this can happen only if F has type (1,1,1,1), i.e., m>l, and

then a must be a linear combination of CF(l)"-6(//3)2, CP(l)n~3H3,

CP(l)n~2CP(2), and CF(1)". But then we would have i3(a)=0mod2,

which violates (d).

Proof of (d) First of all one computes directly that s3(P)=CP(l)n~3,

hence s3(P)^0 mod 2. Thus it remains to consider sm(P) with o?>(3).

If 0)^(1, •••,!), then

sa(P) = hsa(H3CP(ir-3).

Since s<o(H3)=0 for dimensional reasons, v(^3) = 0m°d2 if co'jé

(1,---,1) and iM.(CF(l)n-3) = 0 if a>V(l, • • ■ , 1) it follows easily

that sa(P)=0 mod 2.

So we need only consider skAl(P) for A:_4. One first shows that

s*A,{CP(l)B + 2m+1H3CP(l)n-3} = (n)2fcCF(lf-Ä:mod2m+3,
\k/

hence one wants to know when v2ii™l)+k^m + 3. E.g., if m=l we

want to know when v2(2kl)+k¿i4; since k^.4 this always holds, hence

skAl(P) = 0 mod 2 for rc^4 when m=l. This proves (d) for m=l.

Finally let m>l. Note that we may assume l^k^m + 2^2m. Then

the lemma implies that

"2( D=m ~ "2(/c)"
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Hence v2(2^l)+k^m + 3 iff k^v2(k) + 3, and this fails for k=4, hence

i1>1>lil(Af)^0mod2; but it holds for k>4, which proves (d) for m>l.

Q.E.D.
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