TENSOR PRODUCTS AND ALMOST PERIODICITY¹

HUGO D. JUNGHENN

ABSTRACT. Let E and F be locally convex spaces and G their completed ε -tensor product. It is shown that if S and T are weakly almost periodic equicontinuous semigroups of operators on E and F respectively, then, under mild restrictions on E or F, $S \otimes T$ is a weakly almost periodic equicontinuous semigroup of operators on G, and the almost periodic and flight vector subspaces of G are related in a natural way to the corresponding subspaces of E and F via the ε -tensor product. Furthermore, if E and F both decompose into a direct sum of these subspaces then so does G.

1. Weakly almost periodic semigroups. Let E be a locally convex (Hausdorff) linear topological space with topological dual E', and let L(E) denote the space of continuous linear operators on E. A semigroup of operators on E is a subset E of E containing the identity operator and closed under composition. A vector E is said to be weakly (strongly) almost periodic under E if its orbit E is relatively compact in the weak (strong) topology of E. The set of all weakly (strongly) almost periodic vectors in E shall be denoted by E or E from the notation if they are understood from context. If E is E is weakly (strongly) almost periodic.

It is easily seen that multiplication in a semigroup of operators S on a locally convex space E is separately continuous with respect to the weak or strong operator topologies on L(E), that is to say S is a topological semigroup. Moreover if S is equicontinuous then multiplication is actually jointly continuous in the strong operator topology. The following lemma is at the heart of the theory of weak almost periodicity. A proof can be found in [1].

LEMMA 1.1. Let S be a weakly almost periodic equicontinuous semigroup of operators on a locally convex space E, and let \overline{S} denote the closure

Received by the editors March 26, 1973 and, in revised form June 21, 1973.

AMS (MOS) subject classifications (1970). Primary 47D05, 46M05; Secondary 43A60, 22A15.

Key words and phrases. Semigroup of operators, ε-tensor product, weakly almost periodic, almost periodic, flight vector, reversible vector.

¹ Research supported by the National Science Foundation (under Institutional Grant GU 3287 to George Washington University).

[©] American Mathematical Society 1974

of S in the weak operator topology of L(E). Then \overline{S} is a compact topological semigroup in the weak operator topology.

In connection with Lemma 1.1 we remark that if E is barreled or a Baire space then the weak almost periodicity of S implies equicontinuity [8, p. 83], and if E is semireflexive then the converse implication holds [8, p. 144].

Using Lemma 1.1 the following generalization of a result of Eberlein [3] is easily proved (see [1]).

THEOREM 1.2. Let S be an equicontinuous semigroup of operators on a locally convex space E. Then W = W(E, S) is an S-invariant linear subspace of E. Moreover, if E is complete then W is closed.

COROLLARY 1.3. If S is a weakly almost periodic equicontinuous semi-group on E, then the extension of S to the completion of E is a weakly almost periodic equicontinuous semigroup.

2. Tensor product of weakly almost periodic semigroups. Let E and F be locally convex spaces and $G=E\otimes_{\epsilon}F$ the completion in the ϵ -topology of the tensor product $E\otimes F$. If S and T are semigroups of operators on E and F respectively we shall let $S\otimes T$ denote the set of all operators in L(G) of the form $u\otimes v$, where $u\in S$ and $v\in T$. Recall that $u\otimes v$ is defined by the equation $(u\otimes v)(x\otimes y)=ux\otimes vy$. It follows easily that $S\otimes T$ is a semigroup of operators on G, where $(u_1\otimes v_1)(u_2\otimes v_2)=u_1u_2\otimes v_1v_2$. Furthermore, if S and T are equicontinuous then so is $S\otimes T$ [5].

Our main object in this section is to determine conditions on E and F under which the weak almost periodicity of S and T implies that of $S \otimes T$. To this end we require the following lemma.

- LEMMA 2.1. Let E and F be locally convex spaces, A and B relatively weakly compact subsets of E and F respectively. Suppose one of the following conditions holds:
 - (i) E or F has separable dual;
 - (ii) E or F is a Banach space;
 - (iii) A or B is relatively strongly compact.

Then $A \otimes B = \{x \otimes y : x \in A, y \in B\}$ is relatively compact in the weak topology of $G = E \otimes_{\varepsilon} F$.

PROOF. By the completeness of G it suffices to show that any sequence $(x_n \otimes y_n)$ in $A \otimes B$ has a weak cluster point [8, p. 187]. Let (x_α) be a subnet of (x_n) converging weakly to $x_0 \in E$ and (y_α) a subnet of (y_n) converging weakly to $y_0 \in F$. We shall show that $x_\alpha \otimes y_\alpha$ converges weakly to $x_0 \otimes y_0$ in G. The equality $x_\alpha \otimes y_\alpha - x_0 \otimes y_0 = (x_\alpha - x_0) \otimes y_0 + x_\alpha \otimes (y_\alpha - y_0)$ and the

separate weak continuity of tensor product show that it suffices to prove that $x_{\alpha}\otimes(y_{\alpha}-y_0)$ converges weakly to zero. Let $\varphi\in G'$ and suppose $\varphi(x_{\alpha}\otimes(y_{\alpha}-y_0))$ does not converge to zero. Then there exist a positive number ε and a subnet $x_{\beta}\otimes(y_{\beta}-y_0)$ such that $|\varphi(x_{\beta}\otimes(y_{\beta}-y_0))|\geq \varepsilon$ for all β . Now for all $x\in E$, $y\in F$,

$$\varphi(x \otimes y) = \int_{A' \times B'} \langle x, x' \rangle \langle y, y' \rangle \, d\mu(x', y')$$

where A' and B' are equicontinuous subsets of E' and F' respectively and μ is a Borel measure on $A' \times B'$ with total variation $|\mu| \le 1$ [8, p. 168]. Since A is bounded, $\lambda = \sup\{|\langle x, x' \rangle| : x \in A, x' \in A'\} < \infty$. Therefore for all β we have

(1)
$$\int_{A'\times B'} |\langle y_{\beta} - y_{0}, y'\rangle| \ d \ |\mu| \ (x', y') \ge \varepsilon/\lambda > 0.$$

Suppose F' is separable with total set $\{y'_n\}$, and choose a sequence (y_k) from the set $\{y_{\beta}\}$ such that $\lim_{k\to\infty}\langle y_k-y_0,y'_n\rangle=0$ for every n. Since B is bounded, it follows easily that y_k converges weakly to y_0 . By Lebesgue's Dominated Convergence Theorem we thus obtain a contradiction to (1).

Now assume F is a Banach space. Then by Eberlein's Theorem we may suppose y_n converges weakly to y_0 and in the same manner as above we contradict (1).

Finally, if B is relatively strongly compact then we may assume $\langle y_{\beta}-y_0, y'\rangle$ converges to 0 uniformly on B' and again we contradict (1). Q.E.D.

We may now state and prove the main result of this section.

THEOREM 2.2. Let E and F be locally convex spaces, S and T weakly almost periodic equicontinuous semigroups of operators on E and F respectively, and let $G = E \otimes_{\epsilon} F$. Suppose further that one of the following conditions holds:

- (i) E or F has separable dual;
- (ii) E or F is a Banach space;
- (iii) S or T is strongly almost periodic.

Then $S \otimes T$ is a weakly almost periodic equicontinuous semigroup of operators on G, and $Cl(S \otimes T) = \overline{S} \otimes \overline{T}$ (closures taken in the weak operator topologies).

PROOF. If $x \in E$ and $y \in F$, then $S \otimes T(x \otimes y) = Sx \otimes Ty$; hence if any of the conditions (i)–(iii) holds, Lemma 2.1 implies that $x \otimes y \in W(G, S \otimes T)$. By Theorem 1.2, $G \subseteq W(G)$, i.e., $S \otimes T$ is weakly almost periodic.

Let $w \in Cl(S \otimes T)$, (u_{α}) and (v_{α}) nets in S and T respectively such that $u_{\alpha} \otimes v_{\alpha}$ converges to w in the weak operator topology of L(G). We may

assume u_{α} converges to $u \in S$ and v_{α} converges to $v \in T$. Let $x \in E$, $y \in F$, $x' \in E'$, $y' \in F'$. Then $x' \otimes y'(u_{\alpha} \otimes v_{\alpha}(x \otimes y)) = \langle u_{\alpha}x, x' \rangle \langle v_{\alpha}y, y' \rangle$ converges to $\langle ux, x' \rangle \langle vy, y' \rangle$, hence $x' \otimes y'(u \otimes v(x \otimes y) - w(x \otimes y)) = 0$. If $\varphi \in G'$, then by definition of the ε -topology $|\varphi(\theta)| \leq \sup\{|x' \otimes y'(\theta)| : x' \in A', y' \in B'\}$ for all $\theta \in G$, where A' and B' are equicontinuous subsets of E' and F' respectively [5]. It follows that $\varphi(u \otimes v(x \otimes y) - w(x \otimes y)) = 0$ and hence that $w = u \otimes v \in S \otimes T$.

Conversely, let $u \otimes v \in \overline{S} \otimes \overline{T}$ and let (u_{α}) and (v_{α}) be as before. For fixed β , $u \otimes v_{\beta}$ is the weak operator limit of $u_{\alpha} \otimes v_{\beta}$ and is therefore a member of $Cl(S \otimes T)$. Taking the limit with respect to β we see that $u \otimes v \in Cl(S \otimes T)$. O.E.D.

3. **Decomposition of** $E \otimes_{\varepsilon} F$. In this section we shall determine conditions under which $E \otimes_{\varepsilon} F$ has a direct sum decomposition into subspaces of almost periodic and flight vectors.

If S is a weakly almost periodic semigroup of operators on the locally convex space E, we denote by E_r (E_0) the set of all vectors $x \in E$ having the property that Cl(Sx) = Cl(Sy) for all $y \in Cl(Sx)$ ($0 \in Cl(Sx)$), where the closures are in the weak topology of E. E_r is the set of reversible vectors of E, E_0 the set of flight vectors [6]. Also, we shall let E_p denote the closed linear span of all finite-dimensional S-invariant subspaces E of E which have the property that E restricted to E is contained in an equicontinuous (i.e., uniformly bounded) group of operators on E of almost periodic vectors [2].

The proofs of the following theorems rely heavily on the ideal theory of compact topological semigroups as developed by deLeeuw and Glicksberg in [2]. In particular we shall make use of the fact that a compact topological semigroup R contains a smallest (nonempty) two-sided ideal K(R), called the *kernel* of R, and that K(R) contains at least one idempotent element.

We shall also need the analogs of Theorems 4.9, 4.10 and 4.11 of [2] in the setting of locally convex spaces. An examination of the proofs of these theorems reveals the following: Theorem 4.9 holds for any locally convex space and Theorems 4.10, 4.11 hold for quasi-complete spaces. For the details the interested reader is referred to [7]. These theorems may also be formulated so that no reference to topology need be made [1].

THEOREM 3.1. Let S and T be weakly almost periodic equicontinuous semigroups of operators on the locally convex spaces E and F respectively. If $S \otimes T$ is weakly almost periodic on $G = E \otimes_{\epsilon} F$ and if E_0 and F_0 are closed invariant linear spaces, then G_0 is a closed invariant linear subspace of G and is the closure of $E_0 \otimes F + E \otimes F_0$.

PROOF. By Theorem 4.9 of [2] \overline{S} and \overline{T} have unique minimal left ideals I and J respectively. To show G_0 is a closed invariant subspace of G it suffices by the same theorem to show that $Cl(S \otimes T)$ (= $\overline{S} \otimes \overline{T}$) has a unique minimal left ideal, namely $I \otimes J$.

It is clear that $I\otimes J$ is a left ideal of $\mathrm{Cl}(S\otimes T)$. To show that it is minimal let K be a left ideal of $\mathrm{Cl}(S\otimes T)$ contained in $I\otimes J$, and choose any $u_0\otimes v_0\in K$ such that $u_0\in I$, $v_0\in J$. Now, by Corollary 2.4 of [2], I=K(S), and by Theorem 2.3 [2], $Iu_0=I$. Hence if e is any projection in K(S), then there exists $u\in I$ such that $uu_0=e$. Similarly, if f is a projection in K(T), there exists $v\in J$ such that $vv_0=f$. Since K is a left ideal, $e\otimes f=(u\otimes v)(u_0\otimes v_0)\in K$. Fix e and f and let $I_1=\{u\in I:u\otimes f\in K\}$. I_1 is easily seen to be a nonempty left ideal of S, hence $I_1=I$, i.e., $u\otimes f\in K$ for every $u\in I$. Now let $J_1=\{v\in J:eu\otimes v\in K\}$, where u is a fixed element of I. J_1 is a left ideal of J, and, by what has just been proved, J_1 contains f. Therefore $J_1=J$, and we have shown that $eu\otimes v\in K$ for all $u\in I$, $v\in J$ and all projections $e\in I$. By Corollary 2.4 of [2], I is the union of all right ideals eS, where $e^2=e\in I$. Hence given any $u\in I$ there exists a projection $e\in I$ such that eu=u, and it follows from above that $I\otimes J=K$.

By Theorem 2.3 of [2], $K(Cl(S \otimes T))$ is the union of all minimal left ideals of $Cl(S \otimes T)$ and therefore contains $I \otimes J = K(\overline{S}) \otimes K(\overline{T})$. But the latter is a two-sided ideal and so must equal $K(Cl(S \otimes T))$. Thus $I \otimes J$ contains all minimal left ideals and therefore must be the unique minimal left ideal of $Cl(S \otimes T)$.

Now let $\theta = \lim_{\alpha} \theta_{\alpha} \in G_0$, where (θ_{α}) is a net in $E \otimes F$. By Lemma 4.2 of [2] there exists a projection $g \in K(Cl(S \otimes T)) = K(\overline{S}) \otimes K(\overline{T})$ such that $g(\theta) = 0$. Let $e \in K(\overline{S})$ and $f \in K(\overline{T})$ be arbitrary projections. Then $e \otimes f$ is a projection in $K(Cl(S \otimes T))$, hence $(e \otimes f)g = e \otimes f$ by Corollary 2.4 [2]. In particular, $e \otimes f(\theta) = 0$, hence $\theta = \lim_{\alpha} (\theta_{\alpha} - e \otimes f(\theta_{\alpha}))$. For a fixed $\theta_{\alpha} = \sum_{i=1}^{n} x_i \otimes y_i$,

$$\theta_{\alpha} - e \otimes f(\theta_{\alpha}) = \sum_{i} (x_{i} - ex_{i}) \otimes y_{i}$$

+
$$\sum_{i} ex_{i} \otimes (y_{i} - fy_{i}) \in E_{0} \otimes F + E \otimes F_{0},$$

so $\theta \in \text{Cl}(E_0 \otimes F + E \otimes F_0)$. Therefore we have $G_0 \subseteq \text{Cl}(E_0 \otimes F + E \otimes F_0)$. The reverse inclusion follows readily from the fact that G_0 is a closed subspace of G. Q.E.D.

THEOREM 3.2. Let S and T be weakly almost periodic equicontinuous semigroups of operators on the quasi-complete locally convex spaces E and F respectively, and suppose $S \otimes T$ is weakly almost periodic on $G = E \otimes_{\varepsilon} F$. If $E_r = E_p$ and $F_r = F_p$, then $G_r = G_p = E_p \otimes_{\varepsilon} F_p$.

PROOF. The hypotheses imply that \overline{S} and \overline{T} have unique minimal right ideals I and J respectively [2, Theorem 4.10]. By methods analogous

to those used in the proof of Theorem 3.1, $I \otimes J$ is the unique minimal right ideal of $Cl(S \otimes T)$. Hence by Theorem 4.10 [2], $G_r = G_v$.

If $x \in E_p$ and $y \in F_p$, there exist projections $e \in K(S)$, $f \in K(\overline{T})$ such that ex = x and fy = y [2, Lemma 4.1]. Then $e \otimes f$ is a projection in $K(\operatorname{Cl}(S \otimes T)) = K(\overline{S}) \otimes K(\overline{T})$, and the same lemma shows that $x \otimes y \in G_p$. Thus $E_p \otimes_{\varepsilon} F_p \subset G_p$. Conversely, let $\theta = \lim_{\alpha} \theta_{\alpha} \in G_p$, $\theta_{\alpha} \in E \otimes F$. Choose a projection $g \in K(\operatorname{Cl}(S \otimes T))$ such that $g\theta = \theta$. If e and f are arbitrary projections in $K(\overline{S})$ and $K(\overline{T})$ respectively, then $e \otimes f$ is a projection in $K(\operatorname{Cl}(S \otimes T))$ and by Corollary 2.4 [2], $(e \otimes f)g = g$. It follows that $\theta = e \otimes f(\theta) = \lim_{\alpha} e \otimes f(\theta_{\alpha})$. If $\theta_{\alpha} = \sum_{i=1}^{n} x_i \otimes y_i$, then $e \otimes f(\theta_{\alpha}) = \sum e x_i \otimes f y_i \in E_p \otimes F_p$, hence $\theta \in E_p \otimes_{\varepsilon} F_p$. Therefore $G_p = E_p \otimes_{\varepsilon} F_p$. Q.E.D.

We may now prove the main result of this section.

THEOREM 3.3. If all the hypotheses of Theorems 3.1 and 3.2 are satisfied, then $G = G_v \oplus G_0$, where $G_v = E_v \otimes_{\varepsilon} F_v$ and $G_0 = \text{Cl}(E_0 \otimes F + E \otimes F_0)$.

PROOF. By Theorem 4.11 [2], $K(\overline{S})$ and $K(\overline{T})$ are compact topological groups; to show $G = G_p \oplus G_0$ it suffices by the same theorem to show that $K(\operatorname{Cl}(S \otimes T))$ is a compact topological group. By Ellis' Theorem [4] we need only show that $K(\operatorname{Cl}(S \otimes T))$ is algebraically a group. But this is immediate from the equality $K(\operatorname{Cl}(S \otimes T)) = K(\overline{S}) \otimes K(\overline{T})$ (see proof of Theorem 3.1). Q.E.D.

The above results may be used in a variety of ways to generate nontrivial examples of weakly almost periodic semigroups of operators with the decomposition property of Theorem 3.3. As an illustration, let E and F be reflexive Banach spaces and let S and T be bounded. Then S and T are obviously weakly almost periodic, hence, according to Theorem 2.2, so is $S \otimes T$. Since $G = E \otimes_{\varepsilon} F$ need not be reflexive [9], this result is decidedly nontrivial. Furthermore, if, say, E and E' are strictly convex and T is commutative, then E and F both have direct sum decompositions into almost periodic and flight vector subspaces [2], and therefore, by Theorem 3.3, so does G.

REFERENCES

- 1. J. Berglund and K. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math., no. 42, Springer-Verlag, New York and Berlin, 1967. MR 36 #6531.
- 2. K. deLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24 #A1632.
- 3. W. F. Eberlain, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 12, 112.
- 4. R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 19, 561.
- 5. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.

- 6. K. Jacobs, Ergodentheorie und fastperiodische Functionen auf Halbgruppen, Math. Z. 64 (1956), 298-338. MR 17, 988.
- 7. H. Junghenn, Almost periodic compactifications and applications to one-parameter semigroups, Thesis, The George Washington University, Washington, D.C., 1971.
- 8. H. H. Schaefer, *Topological vector spaces*, Graduate Texts in Math., Springer-Verlag, New York, 1971.
- 9. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N.J., 1950. MR 12, 186.

Department of Mathematics, George Washington University, Washington, D.C. 20006