PRODUCTS OF RC-PROXIMITY SPACES

LOUIS FRIEDLER

ABSTRACT. It is shown that the proximity product of RC-proximity spaces need not be an RC-proximity space. This answers a question of Harris. A positive answer would have implied that the product of regular-closed spaces is regular-closed.

1. Introduction. D. Harris [4] has characterized those spaces which can be densely embedded in a regular-closed space as those regular spaces which admit a compatible generalized proximity, which he called an RC-proximity. In [4] he asked five questions. The first and third have since been answered by Sharma and Naimpally [9] while Hunsaker and Sharma have recently solved the second by giving necessary and sufficient conditions under which a map from an RC-regular space to a regular-closed space can be extended to the Harris extension. (The following variant of Harris' second problem is still open: characterize those topological spaces X for which any continuous function from X to any regular-closed space can be extended to the Harris extension.) The purpose of this note is to give a negative answer to part of the fourth problem which asked if the product of RC-proximities with the usual definition of product proximity (see Čech [2] or Willard [11]) is an RC-proximity. A positive answer to this question would have implied that the product of regular-closed spaces is regular-closed [1, problem 5]. We shall prove that if (X, δ) is an absolutely closed RC-proximity space which is not compact, then there is a compact Hausdorff space Y for which $X \times Y$ with the product structure is not an RC-proximity space. Our proof will make use of a recent result of Willard [10].

Proximity, unmodified, will refer to the usual proximity. A proximally continuous function is called a p-map. Otherwise, all notation and terminology will follow Harris [4].

2. Preliminary definitions and lemmas.

2.1. DEFINITION. (See Willard [11].) If $\{(X_{\alpha}, \delta_{\alpha})\}_{\alpha}$ is a collection of sets with binary relations then the product structure δ on $X = \prod X_{\alpha}$ is

Received by the editors May 17, 1973.

AMS (MOS) subject classifications (1970). Primary 54E05, 54D25.

Key words and phrases. RC-proximity, product proximity, regular-closed.

defined as follows:

 $A \delta B$ iff whenever $A = A_1 \cup \cdots \cup A_n$ and $B = B_1 \cup \cdots \cup B_m$ then there is some A_i and B_j for which $\pi_{\alpha}(A_i) \delta_{\alpha} \pi_{\alpha}(B_j)$ for all α .

When each $(X_{\alpha}, \delta_{\alpha})$ is a proximity space then δ is the product proximity and is the categorical product.

2.2. LEMMA. If $\{(X_{\alpha}, \delta_{\alpha})\}_{\alpha}$ is a collection of R-proximity spaces, then $X=\prod X_{\alpha}$ with the product structure δ is an R-proximity space. δ is the coarsest R-proximity on X for which each π_{α} is a p-map.

PROOF. It follows from Leader's result in [6] that P1-P4 of Harris' definition are satisfied and it is sufficient to verify P5. Let $x \not \delta A$. We shall find a set $B \subseteq X$ for which $x \not \delta (X-B)$ and $B \not \delta A$. This will clearly satisfy P5. Since $x \not \delta A$, there is a finite decomposition of A, $A = A_1 \cup \cdots \cup A_n$ such that for each i, there is some α_i for which $\pi_{\alpha_i}(x) \not \delta_{\alpha_i} \pi_{\alpha_i}(A_i)$. Since each X_{α_i} is an R-proximity space, for each i there is some $K_i \subseteq X_{\alpha_i}$ such that $\pi_{\alpha_i}(x) \not \delta_{\alpha_i} (X_{\alpha_i} - K_i)$ and $K_i \not \delta_{\alpha_i} \pi_{\alpha_i}(A_i)$. Let $B = \bigcap_i \pi_{\alpha_i}^{-1}(K_i)$. Then $X - B = \bigcup_i \pi_{\alpha_i}^{-1}(X_{\alpha_i} - K_i)$. Now, $x \not \delta \pi_{\alpha_i}^{-1}(X_{\alpha_i} - K_i)$ for each i implies that $x \not \delta (X - B)$, and since $A_i \not \delta \pi_{\alpha_i}^{-1}(K_i)$, $A_i \not \delta B$ for each i, so that $A \not \delta B$. That δ is the coarsest such structure follows easily from the fact that if Z is an R-proximity space then $f: Z \rightarrow X$ is a p-map iff $\pi_{\alpha} \circ f$ is a p-map for all α .

2.3. Lemma (Willard [10]). If X is a topological space such that for every compact Hausdorff space Y, $\pi_Y: X \times Y \rightarrow Y$ is a closed map, then X is compact.

The next lemma is a special case of Theorem 7 of [6].

2.4. Lemma. Let (X_1, δ_1) and (X_2, δ_2) be R-proximity spaces and let δ be the product R-proximity. Then $y \delta_i \pi_i(A)$ implies $\pi_i^{-1}(y) \delta A$ for i=1 or 2.

PROOF. We shall prove this for i=2. Let $y \, \delta_2 \, \pi_2(A)$ and assume $\pi_2^{-1}(y) \, \delta A$. Then there are finite decompositions of A and $\pi_2^{-1}(y)$, $A = A_1 \cup \cdots \cup A_n$ and $\pi_2^{-1}(y) = C_1 \cup \cdots \cup C_m$ and for each A_i and C_j either $\pi_1(A_i) \, \delta_1 \, \pi_1(C_j)$ or $\pi_2(A_i) \, \delta_2 \, \pi_2(C_j)$. Now, some member of the decomposition of A, say A_k , must satisfy $\pi_2(A_k) \, \delta_2 \, y$. Since $\pi_2^{-1}(y) \, \delta \, A_j$, it follows from the definition of the product that $\pi_1(A_k) \, \delta_1 \, \pi_1(C_j)$ for all j. But then $\pi_1(A_k)$ is separated from $\bigcup_j \pi_1(C_j)$ and $\bigcup_j \pi_1(C_j) = \pi_1(\bigcup_j C_j) = \pi_1\pi_2^{-1}(y) = X_1$. This is clearly impossible.

3. Main theorem.

3.1. Theorem. If (X_1, δ_1) is an absolutely closed RC-proximity space which is not compact then there exists a compact Hausdorff space X_2 with

its unique compatible proximity δ_2 for which $X_1 \times X_2$ with the product R-proximity is not an RC-proximity.

PROOF. Let (X_1, δ_1) be as in the statement of the theorem. If the result does not hold then for each compact Hausdorff space X_2 , the product R-proximity δ on $X_1 \times X_2$ is an RC-proximity. By the theorem of Scarborough and Stone [8], $X_1 \times X_2$ with the product topology is regular-closed and hence by [4] has exactly one RC-proximity which induces its topology. This RC-proximity is given by $A \delta_0 B$ iff $\bar{A} \cap \bar{B} \neq \emptyset$. It follows from our assumption that $\delta = \delta_0$. We claim that $\pi_2 : X_1 \times X_2 \to X_2$ is closed. Let F be a closed subset of $X_1 \times X_2$ and let $y \in \text{Cl}((\pi_2(F)))$. That is, let $y \delta_2 \pi_2(F)$. By Lemma 2.4, $\pi_2^{-1}(y) \delta_2 F$, so that $\pi_2^{-1}(y) \delta_0 F$. Since both $\pi_2^{-1}(y)$ and F are closed, $\pi_2^{-1}(y) \cap F \neq \emptyset$, from which it follows that $y \in \pi_2(F)$ and $\pi_2(F)$ is closed. Since this is true for any compact Hausdorff space X_2 , Lemma 2.3 implies that X_1 is compact. This contradiction establishes the theorem.

BIBLIOGRAPHY

- 1. M. Berri, J. Porter and R. Stephenson, A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra. III (Proc. Conf., Kanpur, 1968), Academia, Prague, 1971, pp. 93–114, MR 43 #3985.
- 2. E. Čech, Topological spaces, 2nd ed., Publ. House Czech Acad. Sci., Prague, 1959; English transl., Wiley, New York, 1966. MR 35 #2254.
 - 3. D. Harris, Completely regular proximities, and RC-proximities (to appear).
- **4.** ———, Regular-closed spaces and proximities, Pacific J. Math. **34** (1970), 675–685. MR **44** #2198.
- 5. W. Hunsaker and P. Sharma, Extensions of continuous functions; regular-closed spaces (manuscript).
 - 6. S. Leader, On products of proximity spaces, Math. Ann. 154 (1964), 185-194.
- 7. V. Z. Poljakov, Regularity, products and spectra of proximity spaces, Dokl. Akad. Nauk SSSR 154 (1964), 51-54=Soviet Math. Dokl. 5 (1964), 45-49. MR 28 #582.
- 8. C. T. Scarborough and A. H. Stone, *Products of nearly compact spaces*, Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 34 #3528.
- 9. P. Sharma and S. Naimpally, On two problems of Harris concerning RC-proximities, Proc. Amer. Math. Soc. 32 (1972), 312. MR 45 #1110.
- 10. S. Willard, Functionally compact spaces, c-compact spaces and mappings of minimal Hausdorff spaces, Pacific J. Math. 36 (1971), 267-272.
- 11. ——, General topology, Addison-Wesley, Reading, Mass., 1970. MR 41 #9173.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712