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THE  CODIMENSION  OF  THE  BOUNDARY
OF A  LATTICE IDEAL1

J.   W.   LEA,  JR.

Abstract. In a compact connected topological lattice of finite

codimension n, the boundary of a proper principal ideal has codi-

mension less than n. It follows that the boundaries of proper

intervals also have codimension less than n.

In a topological lattice L the boundary of a principal (dual) ideal is a

join (meet) subsemilattice of L [1, Lemma 5]. The purpose of this paper

is to show that this semilattice has codimension less than n whenever L

is a compact, connected topological lattice of codimension «. Note that

such a lattice has breadth « [5, Corollary 2.4].

If S is a semilattice and xgS, then M(x)={y g S:x^y}; the set

L(x) is defined dually; if x^y, then [x,y\=M(x)(~\L(y). The interior

and the closure of A are denoted by A0 and A* respectively. The boundary

of A is F(A) = A*\A°. If a e S a topological semilattice and x g F(M(a)),

then [a, x]<=F(M(a)).

Lemma. Let L be a compact, connected topological lattice of finite

codimension. IfiaGL, then F(M(a)) is locally connected.

Proof. Let x g F(M(a)) and let U be an open subset of F(M(a))

which contains x. It is known that L has a basis of open convex sublattices

[6, Theorem 5]. Hence we may choose an open convex sublattice V

containing x such that Vr\F(M{a))^U. Let p,q g Vr\F(M(a)); then

the connected set [pAq,p]KJ[phq,q] is contained in VCiF(M(a)). Thus

VriF(M(a)) is a connected open subset of F(M(a)) which contains jc

and which is contained in U. Therefore F(M(a)) is locally connected.

We shall state and prove the main result in terms of principal dual

ideals.

Theorem. Let L be a compact, connected topological lattice of finite

codimension n and let a g L\{0, 1}. Then the codimension of F(M(a)) is

less than n.
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1 A portion of this paper appears in the author's dissertation presented to the Gradu-

ate School of Louisiana State University and directed by Professor J. D. Lawson.
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Proof. Since the result clearly holds for w^l, we shall assume

n>\.

We shall first show that x e F(M(a)) implies [a, x] has codimension

less than n. Let x £ F(M(a)) and let U(a)=L\[L(a) UM(a)]. If U(a)= 0,

then a is a cut point of L [2, Theorem 1]. Thus a = x and [a, x] = {a}

has codimension 0.

Suppose U(a)j±0 and xj^a. We shall construct an increasing net in

L(x)iMJ(a) which converges to x. Since x $ L(a) we may choose an open

set V containing x such that VC\L(a)=0. Now x £ F(M(a)) implies

VC\L\M(a)y¿0. Note that L\M(a)=[L(a)uU(a)]\{a} so that VCMJ(a)j¿

0. Thus we may choose a net {x'x}xeA<^ U(a) which converges to *. Let

yx=xAx'x for all a £ A. Then {yx}xe^ L(x) and converges to x. If

{yJtter^ L(a) for any cofinal subset fcA, then {(yx, a)}xer converges to

(x, a) £ LxL. Since the graph of ^ is a closed subset of LxL, then

x^a. But x £ M(a) so that x=a contrary to the choice of x^a. Hence

we may assume^ ^ L(a) for all a £ A. Ifyx e M(a), then a^yx=xAx'x^x'x

contrary to a^x'x. Thus {yx}xsA<^L(x)C\U{a).

Let xx=p\ßixyß for each a £ A. Clearly {xx}xeA is an increasing net

contained in L(x). Let U be an open set containing x. There exists a

closed sublattice Vcz U such that x e Vo [6, Theorem 5]. Since {yx}xeA

converges to x, there exists ß £ A such that a^/9 implies yx e V°. Hence

xy=/\xiyyx £ V for all y^ß. Thus {xx}xeA converges to x. That {xx}xeA<=

U(a) follows just as did the fact that {yx}xeAc U(a). Therefore {xx}xeA is

the required net.

For each a £ A, the interval [a, aVxx] has breadth less than n [7, Lemma

1.1]. Since {xx}xeA is increasing, {[a, avxx]}X€A is a chain. Therefore

\JxeA [a, aVxx] has breadth less than n; consequently the breadth of

(UaeA [a> aVxx])* is less than n. Since the interval [a, aVxx] = (aVxx)AM(a),

it follows that [a, x] = (\JxeA [a, aVxx])* [3, Theorem 3]. Thus [a, x]

has breadth less than n, and since [a, x] is a compact, connected topo-

logical lattice, its breadth and its codimension are equal.

The semilattice F(M(a)) is a Lawson semilattice, i.e. has a neighborhood

basis of subsemilattices [5, Theorem 1.1]. A. Y. W. Lau has shown that

any compact, connected, locally connected Lawson semilattice S contains

a point x for which the codimension of S and the codimension of L(x)

are equal [4, Lemma 5.2]. Thus for some x e F(M(a)) the codimension

of [a, x] and the codimension of F(M(a)) are equal.

Corollary. Let L be a compact connected topological lattice of

finite codimension n. If a, b £ L and a<.b, then the codimension of

F([a, b]) is less than n. Thus L has a basis of open sets whose boundaries

have codimension less than n.
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Proof. If a=0 or 6—1, then [a, b]=L(b) or [a, b]=M(a). Thus we

may assume a^O and b^l. It is easy to see that F([a, b]) is a closed

subset of F(M{a))\jF(L{b)). By the theorem each of these sets has co-

dimension less than «. Thus the codimension of F([a, b]) is less than n.

Since L has a basis of neighborhoods at each point consisting of intervals

[a, b] [6, Theorem 5], the collection of interiors of these intervals is the

desired basis.
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