MULTIPLE POINTS OF TRANSIENT RANDOM WALKS

JOEL H. PITT

ABSTRACT. We determine the asymptotic behavior of the expected numbers of points visited exactly j times and at least j times in the first n steps of a transient random walk on a discrete Abelian group. We prove that the strong law of large numbers holds for these multiple point ranges.

Let X_1, X_2, \cdots be a sequence of independent identically distributed random variables (taking values in an arbitrary countable Abelian group), and let $S_1=X_1, S_2=X_1+X_2, S_3=X_1+X_2+X_3+\cdots$ be the sequence of partial sums of $\{X_n\}$. The range R_n of the random walk associated with X_1, X_2, \cdots is the number of distinct values assumed by the finite sequence of partial sums S_1, S_2, \cdots, S_n . Dvoretsky and Erdös [1] (and by different means Spitzer, Kesten and Whitman [3, pp. 38-40]) have shown that for any random walk $\lim_{n\to\infty} E(R_n/n)=1-F$, where F is the probability that $\exists n\ni S_n=0$, and, in fact, the strong law of large numbers applies to the range in the sense that $\lim_{n\to\infty} R_n/n=1-F$ a.s. (The latter result is of interest principally when the walk is transient, i.e. $F\neq 1$; Dvoretsky and Erdös obtain the stronger $\lim_{n\to\infty} R_n/E(R_n)=1$ a.s. for simple random walk in the plane.)

We obtain analogous results concerning the number of distinct values assumed exactly j times and at least j times by the sequence S_1, S_2, \dots, S_n . We introduce the notation:

 R_n^j = the # of distinct values occurring at least j times in the sequence S_1, \dots, S_n .

 $R_n^{(j)}$ = the # of distinct values occurring exactly j times in the sequence S_1, \dots, S_n .

Our main result is:

THEOREM. For any random walk and any j, $\lim_{n\to\infty} (R_n^j/n) = (1-F)F^{j-1}$ a.s., and $\lim_{n\to\infty} (R_n^{(j)}/n) = (1-F)^2F^{j-1}$ a.s.

Received by the editors January 29, 1973.

AMS (MOS) subject classifications (1970). Primary 60F15, 60J15; Secondary 28A65, 60G50.

Key words and phrases. Range of random walk, strong law of large numbers, ergodic theorem.

[©] American Mathematical Society 1974

- *Note.* (1) For recurrent walks this result is a direct consequence of the result for j=1, and of no interest.
- (2) The corresponding result for simple walk on \mathbb{Z}^n , $n \ge 1$, is stated by Erdös and Taylor [2]. Their method is entirely different and applies only to walks on \mathbb{Z}^n .

PROOF. The proof is inductive. The result is already known for R_n^1 ; so all we need do is establish the induction step: $R_n^j/n \rightarrow (1-F)F^{j-1}$ a.s. implies $R_n^{(j)}/n \rightarrow (1-F^2)F^{j-1}$ a.s. and $R_n^{(j+1)}/n \rightarrow (1-F)F^{j-1}$ a.s.

We assume then that $R_n^j/n \to (1-F)F^{j-1}$ a.s. and turn to the first order of business, the determination of the behavior of $E(R_n^{(j)})/n$ and $E(R_n^{j+1})/n$ as $n \to \infty$. To this end we write:

$$Z_k = 1$$
, if there are exactly $j - 1$ indices $l < k \ni S_l = S_k$, $= 0$, otherwise.

$$Y_{k,n} = 1$$
, if there are exactly $j - 1$ indices $l < k$ such that $S_l = S_k$ and $S_{k+1} \neq S_k$, $S_{k+2} \neq S_k$, \cdots , $S_n \neq S_k$, $= 0$, otherwise.

We have $R_n^{(j)} = \sum_{k=1}^n Y_{k,n}$ so that $E(R_n^{(j)}) = \sum_{k=1}^n E(Y_{k,n})$. Also, X_{k+1}, \dots, X_n , are independent of Z_k , hence

$$E(Y_{k,n}) = E(Z_k)P(X_{k+1} \neq 0, X_{k+1} + X_{k+2} \neq 0, \dots, X_{k+1} + \dots + X_{k+n} \neq 0)$$

= $E(Z_k)P(S_1 \neq 0, \dots, S_{n-k} \neq 0).$

But also $R_n^i = \sum_{k=1}^n Z_k$ and, in view of the induction hypothesis and the Lebesgue dominated convergence theorem,

(1)
$$\sum_{k=1}^{n} E(Z_k)/n = E(R_n^j)/n \to (1-F)F^{j-1}.$$

Furthermore, if we write, $f_k = P(S_1 \neq 0, S_2 \neq 0, \dots, S_{k-1} \neq 0, S_k = 0)$ we have $P(S_1 \neq 0, \dots, S_{n-k} \neq 0) = 1 - \sum_{i=1}^{n-k} f_i$ and, as $n \to \infty$,

(2)
$$1 - \sum_{i=1}^{n-k} f_i \to 1 - F.$$

A straightforward argument then yields

(3)
$$E(R_n^{(j)})/n \to (1-F)^2 F^{j-1},$$

and the further observation that $R_n^{j+1} = R_n^j - R_n^{(j)}$ gives

(4)
$$E(R_n^{j+1})/n \to (1-F)F^j$$
.

To obtain the desired strong laws of large numbers we introduce the new sequences of random variables defined for $n=1, 2, \dots, k=1, 2, \dots$:

 $T_{k,n}^{(j)}$ = the number of distinct values occurring exactly j times in $S_{(k-1)n+1}, \dots, S_{kn}$, $T_{k,n}^{j+1}$ = the number of distinct values occurring at least j+1 times in $S_{(k-1)n+1}, \dots, S_{kn}$.

For any m we have

(5)
$$R_{mn}^{(j)} \leq \sum_{k=1}^{m} T_{k,n}^{(j)} + E_{m,n},$$

(6)
$$R_{mn}^{j+1} \le \sum_{k=1}^{m} T_{k,n}^{j+1} + E_{m,n},$$

where $E_{m,n}$ =the number of distinct sums which occur in at least two different blocks

$${S_{(k-1)n+1}, \cdots, S_{kn}}, {S_{(k'-1)n+1}, \cdots, S_{k'n}}, k, k' \leq m.$$

We prove below that

$$\limsup_{n\to\infty} \limsup_{m\to\infty} E_{m,n}/mn = 0,$$

and complete our proof of the theorem assuming the truth of this lemma. We let $m\rightarrow\infty$ in (5) and obtain

(7)
$$\limsup_{m \to \infty} \frac{R_{mn}^{(j)}}{mn} \leq \lim_{m \to \infty} \frac{\sum_{k=1}^{m} T_{k,n}^{(j)}}{mn} + \lim_{m \to \infty} \frac{E_{m,n}}{mn}.$$

By the strong law of large numbers applied to the sequence of (bounded) independent identically distributed random variables $T_{k,n}$, $k=1, 2, \cdots$,

(8)
$$\lim_{m \to \infty} \frac{\sum_{k=1}^{m} T_{k,n}^{(j)}}{mn} = \frac{1}{n} \lim_{m \to \infty} \frac{\sum_{k=1}^{m} T_{k,n}^{(j)}}{m} = \frac{E(T_{1,n}^{(j)})}{n} = \frac{E(R_n^{(j)})}{n}.$$

(7) yields a bound on $\limsup R_k^{(j)}/k$ as $k \to \infty$ through a subsequence consisting of multiples of n. The restriction of the mode of approach to a subsequence may be eliminated by observing that

$$R_k^{(j)}/k \le \frac{R_{\lfloor k/n \rfloor_n + (k-\lfloor k/n \rfloor_n)}^{(j)}}{\lfloor k/n \rfloor_n} \le R_{\lfloor k/n \rfloor_n}^{(j)}/\lfloor k/n \rfloor_n + 1/\lfloor k/n \rfloor$$

$$= R_{mn}^{(j)}/mn + o(1),$$

so that $\limsup_{k\to\infty} R_k^{(j)}/k \leq \limsup_{m\to\infty} R_{mn}^{(j)}/mn$ for any n.

Substituting (8) in (7), letting $n \rightarrow \infty$ and using (3) yields

(9)
$$\limsup_{k \to \infty} R_k^{(j)}/k \le (1 - F)^2 F^{j-1} \quad \text{a.s.}$$

Trivial adjustments in the argument which led from (5) to (9) allow us to use (6) to conclude

(10)
$$\limsup_{k \to \infty} R_k^{j+1}/k \le (1-F)F^j.$$

But now we complete our argument with ease. For,

$$\lim_{k\to\infty}\inf R_k^{(j)}/k \ge \lim_{k\to\infty}\inf R_k^{j}/k - \lim\sup R_k^{j+1}/k,$$

and in view of our induction hypothesis and (10) the right side is $\geq (1-F)^2F^{j-1}$. Finally

$$\lim_{k \to \infty} R_k^{j+1}/k = \lim_{k \to \infty} R_k^{j}/k - \lim_{k \to \infty} R_k^{(j)}/k = (1 - F)F^j.$$

PROOF OF LEMMA. We define the random variable ξ_i^n by

$$\xi_i^n = 1$$
, if $S_i \neq S_{i+1}$, $S_i \neq S_{i+2}$, \cdots , $S_i \neq S_{(\lfloor i/n \rfloor + 1)_n}$
but $\exists k > i \ni S_k = S_i$ or $n \mid i$ and $\exists k > i \ni S_k = S_i$,
= 0, otherwise.

Clearly $0 \le E_{m,n} \le \sum_{i=1}^{mn} \xi_i^n$ (in fact, $E_{m,n} \le \sum_{i=1}^{(m-1)n} \xi_i^n$). We now choose an n' corresponding to n so that $n' \to \infty$ as $n \to \infty$ and $n'/n \to 0$. We let

$$\eta_i^n = 1, \text{ if } S_i \neq S_{i+1}, S_i \neq S_{i+2}, \cdots, S_i \neq S_{i+n'}$$
but $\exists k > i + n' \ni S_k = S_i$,
$$= 0, \text{ otherwise.}$$

The sequence of random variables η_i^n is stationary ergodic, hence

$$\lim_{k\to\infty}\frac{1}{k}\sum_{i=1}^k\eta_i^n=E(\eta_i^n)=\sum_{n'}^\infty f_j,$$

by the ergodic theorem. Also $\xi_i^n \leq \eta_i^n$ unless n|i or [i/n] + n - i < n', so

$$0 \le E_{m,n} \le \sum_{i=1}^{mn} \xi_i^n + m \cdot n'.$$

Hence

$$0 \leq \limsup_{m \to \infty} \frac{E_{m,n}}{mn} \leq \lim_{m \to \infty} \frac{\sum_{i=1}^{mn} \xi_i^n}{mn} + \frac{n'}{n} = \sum_{n'}^{\infty} f_i + \frac{n'}{n}.$$

And as $n \to \infty$, $\sum_{n'}^{\infty} f_j + n'/n \to 0$ by our choice of n'.

BIBLIOGRAPHY

- 1. A. Dvoretsky and P. Erdös, *Some problems on random walk in space*, Proc. Second Berkeley Sympos. on Math. Statist. and Probability, Univ. of California Press, Berkeley and Los Angeles, 1951, pp. 353–368. MR 13, 852.
- 2. P. Erdös and S. J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar. 11 (1960), 137-162. MR 22 #12599.
- 3. F. Spitzer, *Principles of random walk*, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1964. MR 30 #1521.

Department of Mathematics, State University College at New Paltz, New Paltz, New York 12561