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MULTIPLE POINTS  OF TRANSIENT RANDOM WALKS

JOEL  H.   PITT

Abstract. We determine the asymptotic behavior of the

expected numbers of points visited exactly j times and at least j

times in the first n steps of a transient random walk on a discrete

Abelian group. We prove that the strong law of large numbers

holds for these multiple point ranges.

Let Xx, X2, • • • be a sequence of independent identically distributed

random variables (taking values in an arbitrary countable Abelian

group), and let SX=XX, S2=XX+X2, S3=Xx+X2+X3-\-be the se-

quence of partial sums of {Xn}. The range Rn of the random walk associ-

ated with Xx, X2, • • • is the number of distinct values assumed by the

finite sequence of partial sums Sx, S2, ■ ■ ■ , Sn. Dvoretsky and Erdös [1]

(and by different means Spitzer, Kesten and Whitman [3, pp. 38-40])

have shown that for any random walk lim,,.^ F(/?„/«) = l—F, where F

is the probability that 3« 3 Sn=0, and, in fact, the strong law of large

numbers applies to the range in the sense that lim,,^«, RJn=l—F a.s.

(The latter result is of interest principally when the walk is transient,

i.e. Fj£\; Dvoretsky and Erdös obtain the stronger lim,,..^ RjEiRn)=l

a.s. for simple random walk in the plane.)

We obtain analogous results concerning the number of distinct values

assumed exactly/' times and at least/times by the sequence Sx, S2, ■ ■ • , Sn.

We introduce the notation :

R'n = the # of distinct values occurring at least j times in

the sequence Sx, ■ ■ • , Sn.

Rl¿} = the # of distinct values occurring exactly/ times in

the sequence Sx, ■ ■ ■ , Sn.

Our main result is:

Theorem. For any random walk and any j, limn^a!(/?J1/n) = (l— F)Fi~1

a.s., andlim„_>00(JR(„i)/«) = (l-F)2F-1 a.s.
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Note. (1) For recurrent walks this result is a direct consequence of

the result for/= 1, and of no interest.

(2) The corresponding result for simple walk on Z", n_l, is stated by

Erdös and Taylor [2]. Their method is entirely different and applies only

to walks on Z".

Proof. The proof is inductive. The result is already known for R\;

so all we need do is establish the induction step: /?3„/n->-(l — F)F'~1 a.s.

implies R^ln^il-F2)^-1 a.s. and Ri+1/n-^il-F)F~1 a.s.

We assume then that R'njn->i\ —F^F'-1 a.s. and turn to the first order

of business, the determination of the behavior of F(/?^3))/« and EiR!n+1)jn

as n->oo. To this end we write:

Zk = 1,   if there are exactly/ — 1 indices / < ka St = Sk,

= 0,   otherwise.

Yk¡n = 1,   if there are exactly / — 1 indices / < k such that

Si = Sk and Sk+X # Sk, Sk+2 ¿¿ Sk, • • •, Sn j* Sk,

= 0,   otherwise.

We have äJJ'-Sw Yk,n so that EiR^)=2U EiYk_n). Also, Xk+X, • • • ,
Xn, are independent of Zk, hence

EiYk J = EiZk)PiXk+x * 0, Xk+1 + Xk+2 ̂  0, •• •, Xk+X + ■■■+ Xk+n * 0)

= EiZk)PiSx*0,---,Sn_k*0).

But also R'n=^2jc=xZk and, in view of the induction hypothesis and the

Lebesgue dominated convergence theorem,

n

(i) j £(z*>/n - E(RMn -*(1 - F)f '-1-

Furthermore, if we write, /t=F(5*1^0, £¡¡^0, • • • , Sk_xj¿0, Sk=0) we

have F(S1?¿0, ■ • • , Sn_k^0)=l-21=if and, as «^oo,

n-fc

(2) l-Z/,-1 -F-

A straightforward argument then yields

(3) £«»)//,-> (l-FfF'-1,

and the further observation that R!n+1 = R'n—R1^ gives

(4) F(Rl+1)/n -* (1 - F)F>.



1974] MULTIPLE  POINTS   OF  TRANSIENT  RANDOM   WALKS 197

To obtain the desired strong laws of large numbers we introduce the

new sequences of random variables defined for n=l, 2, • ■ • , k=l, 2, • • • :

T{kX = the number of distinct values occurring exactly/ times in

"(*-l)n+li > ^kn,

Vk_n = the number of distinct values occurring at least j + 1

times in Su_x>n+X, ■ • ■ , Skn.

For any m we have
m

V-M K-rnn  = ¿   I k.n  +  Lmn,

(6) R'mn   ^ 2, Tkîn1 + F.m.n,

where Emn = the number of distinct sums which occur in at least two

different blocks

i^Ofc-Dn+li ' ' ' '      ^kni, {^(k'-Vn+l,     " ' > ̂ k'nj, k, k    _ ÍÍJ.

We prove below that

lim sup lim sup Emn/mn = 0,
7Ï-* 00 77i-*0O

and complete our proof of the theorem assuming the truth of this lemma.

We let m-+oo in (5) and obtain

p(j) Vm     t<.}) p

(7) hm sup-^ lim-+ hm-.
TO-oo   mn      m-oo      mn m-«oo mn

By the strong law of large numbers applied to the sequence of (bounded)

independent identically distributed random variables Tkn, k=l, 2, • • • ,

(v. ,.    SE-i TJ'X      1   ..    Tkli Tï,l      EJTÏ.l)      E(R{:))
(8) lim-= - hm- =-=-.

m-»»      mn n m->a>       m n n

(7) yields a bound on lim sup Rk3)¡k as rc->-oo through a subsequence

consisting of multiples of n. The restriction of the mode of approach to a

subsequence may be eliminated by observing that

(s)D

Rk Ik =-—;-= RwnJW"]n + 1/W«]

= R^Jmn + o(l),

so that lim supt^œ R{k/k ^lim sup™^ R(^n\mn for any n.
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Substituting (8) in (7), letting «->-oo and using (3) yields

(9) lim sup R^'/k < (1 - FfF1'1   a.s.
k-,ao

Trivial adjustments in the argument which led from (5) to (9) allow

us to use (6) to conclude

(10) lim sup R'k+1lk ̂ (1 - F)F>'.
fc-*0O

But now we complete our argument with ease. For,

lim inf R^'/k j> lim inf R'k/k - lim sup R'k+1/k,
k-><x> fc-*oo

and in view of our induction hypothesis and (10) the right side is _^

(1 -FfF-1. Finally

lim Rk+1/k = lim R3k/k - lim R^'/k = (1 - F)F\
&—»■ CO ft->00 fc->00

Proof of Lemma.   We define the random variable £" by

£"= i>  " *< ̂  si+x, s¿ j¿ si+2, • • ■, s j 7^ s(r¿/„]+1)n

but 3/c > i 3 Sk = Si or n\i and 3k > i 3 Sk = Sit

= 0,   otherwise.

Clearly 0=Fm,n = 2r=i f? (in fact, Em,n^J,^x1,n £). We now choose an

n corresponding to n so that n'—>co as n—*-co and n'/n-*0. We let

j?? ■= 1,   if S, # Sm, S, 5¿ Si+2, ■ • ■ ,Stjí si+n,

butlk>i + n'3Sk = Si,

= 0, otherwise.

The sequence of random variables rf¡ is stationary ergodic, hence

i    k oo

lim-2^ = E(v?) = 2U
k-> oo k i=1 n>

by the ergodic theorem. Also ¡S^rfi unless n\i or [i/«]+w —/<«', so

0 ̂  Em,„ ̂ 2 ft" + m ■ »'■

Hence

0 5? hm sup-S hm-+ — = > j¡ + — .
m^oo    mn      m->°o   mn n       n- n

And as «—>-oo, T", /¡.+«'/«->0 by our choice of«'.
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