A SPECTRAL SEQUENCE FOR THE INTERSECTION OF SUBSPACE PAIRS

RICHARD N. CAIN

ABSTRACT. A general-homology spectral sequence that generalizes the Mayer-Vietoris exact sequence is established between the intersection of a family of subspace pairs and the system of partial unions of the family. The basis of the construction is a topological analogue of the "bar construction" of homological algebra.

We shall show here that a finite family $\mathscr{P} = \{(X_i, A_i) | i \in I\}$ of subspace pairs in a space X have, for each general homology theory h_* , a spectral sequence

(a)
$$E_{1;j}^{n} \cong \bigoplus_{N_{s=n}} h_{j} \left(\bigcup_{s} X_{i}, \bigcup_{s} A_{i} \right) \Longrightarrow h_{j-n} \left(\bigcap_{I} X_{i}, \bigcap_{I} A_{i} \right)$$

 $(s \subset I)$, Ns being (number of members in s)-1. This is just the spectral sequence of a cover with the roles of union and intersection interchanged. Its connection with the Mayer-Vietoris sequence will be examined below, and we shall derive from it the spectral sequence of the homology sheaf of X.

Construction of (a). Start with any finite set U (= the universe) that contains I as a subset, and define (using T to denote the based unit interval, while $\bigwedge_J Y = Y^J/\{\eta \in Y^J | * \in \eta J\}$ for based spaces Y and finite sets J)

$$\nabla s = \bigwedge \partial T \wedge \bigwedge T \qquad (s \subset U),$$

$$K = \bigcup_{a \in U} \nabla \{a\} = \partial \nabla \varnothing,$$

$$C = \{*\} \cup \bigcup_{a \in U - I} \nabla \{a\} = \bigwedge_{I} T \wedge \partial \bigwedge_{U - I} T,$$

$$M = X \times C \cup \bigcup_{s \subset I} \bigcup_{s} A_{i} \times \nabla s,$$

$$L^{n} = M \cup \bigcup_{s \subset I; Ns \geq n} \bigcup_{s} X_{i} \times \nabla s \qquad (n \in \mathbb{Z})$$

$$L = L^{0} = X \times C \cup \bigcup_{s \subset I} \bigcup_{s} X_{i} \times \nabla s.$$

Received by the editors February 16, 1973.

AMS (MOS) subject classifications (1970). Primary 55H05, 55H25; Secondary 55C05. Key words and phrases. Spectral sequence, general homology, general cohomology, cover, duality.

 $^{^{1}}$ Assumed to be subcomplex pairs under some CW complex structure on X.

[©] American Mathematical Society 1974

We require $I \neq \emptyset$ but permit U=I. Caution. Here ∂ is used in the context of based spaces, so $\partial \partial T = \{*\}$, not \emptyset . The formulas for the spectral sequence are as follows (as in [1, p. 108 ff.] for any filtered space):

$$E_{r;j}^{n} = \frac{\text{Im}[h_{p}(L^{n}, L^{n+r}) \to h_{p}(L^{n-r+1}, L^{n+r})]}{\text{Im}[h_{p}(L^{n+1}, L^{n+r}) \to h_{p}(L^{n-r+1}, L^{n+r})]} \quad (n, j \in \mathbb{Z}; r = 1, 2, \cdots)$$
where $p = j - n + NU$ and maps are induced by inclusion,

(c)
$$d_{r;j}^n = \text{homomorphism } E_{r;j}^n \to E_{r;j+r-1}^{n+r} \text{ induced by } \partial_p \text{ for the triple}$$

 $(L^n, L^{n+r}, L^{n+2r}),$

$$u_{r;j}^n = \text{isomorphism } E_{r+1;j}^n \to \mathscr{H}_j^n E_{r;*}^* \text{ induced by } h_p(\subseteq) \text{ for the inclusion } (L^n, L^{n+r+1}) \subset (L^n, L^{n+r}).$$

Thus, $E_{\infty,j}^n = E_{r,j}^n$ for large r, $= F^n G_{j-n} / F^{n+1} G_{j-n}$, where

(c, Cont'd.)
$$G_q = h_{q+NU}(L, M) \qquad (q \in \mathbb{Z}),$$

$$F^nG_q = \operatorname{Im}[h_{q+NU}(L^n, M) \to h_{q+NU}(L, M)].$$

(Note that $G_* = F^0G_* \supset F^1G_* \supset \cdots \supset F^{NI+1}G_* = \{0\}$.) Define also, for each $a \in U$ and $s \subseteq U$ containing a,

$$\begin{array}{ll} \nu(a): \pmb{h}_q(\nabla s,\,\partial \nabla s) \xrightarrow{\cong} \pmb{h}_q(\partial \nabla s',\,\partial \nabla s'\,-\,\nabla^\# s) \,(s'=s-\{a\}), \\ (\mathrm{d}) & \mu(a): \pmb{h}_{q+1}(\nabla s',\,\partial \nabla s') \xrightarrow{\partial_{q+1}} \pmb{h}_q(\partial \nabla s',\,\partial \nabla s'\,-\,\nabla^\# s), \\ & \sigma(a) = \mu(a)^{-1} \nu(a), \end{array}$$

where $\nabla^{\#}(\cdot) = \nabla(\cdot) - \partial \nabla(\cdot)$ and $h_* =$ any general homology theory, q any integer. For distinct $a_1, \dots, a_k \in s \subset U$ $(k \ge 1)$, denote $s - \{a_1, \dots, a_k\}$ as s'' and define

(d, Cont'd.)
$$\sigma(a_*): h_{\sigma}(\nabla s, \partial \nabla s) \xrightarrow{\cong} h_{\sigma+k}(\nabla s'', \partial \nabla s'')$$

as $\sigma(a_k) \cdots \sigma(a_2)\sigma(a_1)$, where a_* means (a_1, \cdots, a_n) . $\sigma(a_*)$ is alternating, because, for any permutation of a_* , the corresponding coordinate transformation of $\nabla s''$ permutes the factors of $\sigma(a_*)$ in the same way.

Now let $a_* = (a_0, \dots, a_{NU})$ be a choice of numbering of U, and for each nonempty subset $s \subseteq I$ let $i_*^s = (i_0^s, \dots, i_{Ns}^s)$ be a choice of numbering of s. They, together with σ and Lemmas 1, 2 below, determine two

1974]

isomorphisms:

 $(q, n, j \in \mathbb{Z})$ which combine with formulas (c) to give the formula (a).

LEMMA 1. λ_{α} is an isomorphism.

 $\varphi_{j}^{n} = \sum \lambda_{s} \qquad \text{(Lemma 2)} \cong \bigvee_{p} \sum h_{p}(c)$ $h_{p}(L^{n}, L^{n+1})$

PROOF. (Referring to (e).) ∂_{q+NU+1} is bijective by contractibility of $(\nabla \varnothing, C) = \bigwedge_I T \wedge (\bigwedge_{U-I} T, \partial \bigwedge_{U-I} T)$. For bijectivity of $h_{q+NU}(\subseteq)$ it suffices by the Five Lemma to consider the case $A_i = \varnothing$ (all $i \in I$). Define

$$L^{(n)} = X \times C \cup \bigcup_{s \subset I: Ns \ge n} \left[\bigcap_{s} X_i \times \bigcup_{s} \nabla \{i\} \right] \qquad (n \in \mathbb{Z}).$$

$$h_*(L^{(n)}, L^{(n+1)}) \cong \bigoplus_{Ns=n} h_*\left(\left(\bigcap_{s} X_i, \bigcup_{I-s} X_i \cap \bigcap_{s} X_i \right) \times \left(C \cup \bigcup_{s} \nabla \{i\}, C \right) \right)$$

by additivity of homology, $\cong \{0\}$ by contractibility of

$$\left(C \cup \bigcup_{s} \nabla \{i\}, C\right) = \bigwedge_{I-s} T \wedge \left(\partial \bigwedge_{s \cup (U-I)} T, \bigwedge_{s} T \wedge \partial \bigwedge_{U-I} T\right),$$

assuming $0 \le n < NI$. $h_*(\bigcap_I X_i \times (K, C)) \cong h_*(L^{(NI)}, X \times C)$ by excision, $\cong h_*(L^{(NI-1)}, X \times C) \cong \cdots \cong h_*(L^{(0)}, X \times C) = h_*(L, X \times C)$ by exactness using above $\{0\}$. \square

LEMMA 2. $\sum \lambda_s$ is an isomorphism.

PROOF. Additivity of homology.

Comparison with the Mayer-Vietoris sequence. Since (a) relates the various unions of the pairs \mathscr{P} to their intersection it brings to mind the Mayer-Vietoris sequence. (a) is in fact a generalization of the latter, as we shall now show. (The Mayer-Vietoris sequence is the NI=1 case of ε , δ^0 , β below.)

For any $n \in \mathbb{Z}$ let $S_n(I) = \{i_* = (i_0, \dots, i_n) | i_0, \dots, i_n \in I\}$, which is to entail that $S_n(I) = \emptyset$ for negative n. Using X_{i_*} to mean $X_{i_0} \cup \dots \cup X_{i_n}$, define $C^n(\mathcal{P}; h_j(\bigcup \cdot))$ ($j \in \mathbb{Z}$) = subgroup of $\prod_{i_* \in S_n(I)} h_j(X_{i_*}, A_{i_*})$ consisting of alternating members $\xi = \{\xi^{i_*} | i_* \in S_n(I)\}$ for which $\xi^{i_*} = 0$ whenever two or more of i_0, \dots, i_n are equal, and note that

$$C^n(\mathscr{P}; h_j(\bigcup \cdot)) \cong \bigoplus_{Ns=n: s \subset I} h_j(\bigcup_s X_i, \bigcup_s A_i)$$

under the correspondence $\xi \mapsto \{\xi^{i_*}| Ns = n, s \subseteq I\}$. Denote by Φ_j^n the composite of φ_j^n with this isomorphism.

LEMMA 3. The following diagram commutes:

$$h_{j}\left(\bigcap_{I} X_{i}, \bigcap_{I} A_{i}\right) \xrightarrow{\varepsilon} C^{0}(\mathscr{P}; h_{j}(\bigcup \cdot)) \xrightarrow{\delta^{0}} C^{1}(\mathscr{P}; h_{j}(\bigcup \cdot)) \xrightarrow{\delta^{1}} \cdots$$

$$\cong \bigvee_{\kappa_{j}} \qquad \cong \bigvee_{\kappa_{j}} \Phi_{j^{0}} \qquad \cong \bigvee_{\sigma} \Phi_{j^{1}} \qquad \cdots$$

$$G_{j} \xrightarrow{\kappa_{j}} F^{0}G_{j}/F^{1}G_{j} \xrightarrow{\Xi} E^{0}_{\infty; j} \xrightarrow{\kappa_{j}} E^{1}_{1; j} \xrightarrow{d_{1}:_{j}} E^{1}_{1; j} \xrightarrow{d^{1}} \cdots$$

where

$$\varepsilon(\xi)^{i_0} = \xi \big|_{X_{i_0}, A_{i_0}} \qquad \left(\xi \in h_j\left(\bigcap_I X_i, \bigcap_I A_i\right), i_0 \in I\right)$$

and

$$\begin{split} \delta^n(\xi)^{i_\bullet} &= \sum_{0 \leq k \leq n+1} (-1)^k \xi^{i_\bullet(k)} \big|^{X_{i_\bullet} \cdot A_{i_\bullet}} \\ & (n \in \mathbb{Z}, \ \xi \in C^n(\mathscr{P}; h_j(\bigcup \, \cdot \,)), \ i_{-\!\!\!*} \in S_{n+1}(I)) \end{split}$$

$$i_*(k)$$
 being $(i_0, \dots, i_{k-1}, i_{k+1}, \dots, i_{n+1})$.

1974]

PROOF. For the square involving δ^n for some n, $0 \le n \le NI$, we consider an arbitrary element of $C^n(\mathcal{P}; h_j(\bigcup \cdot))$ of the form $\chi(i_*; \theta)$ defined as follows: i_* is a numbering of a subset $s \in I$ with Ns = n, θ belongs to $h_j(\bigcup_s X_i, \bigcup_s A_i)$, and $\chi(i_*; \theta)^{i_*} = \pm \theta$ or 0, depending upon whether i_* is an even or odd permutation of i_* or not a permutation of i_* , respectively. $\delta^n \chi(i_*; \theta) = \sum_{i \in I - s} \chi(ii_*; \theta)^{|X_{ii_*}| A_{ii_*}}$. In the commutative diagram

$$h_{p}(\nabla s, \partial \nabla s) \xrightarrow{\{\mu(i)\}} \bigoplus h_{p-1}(\partial \nabla s, \partial \nabla s - \nabla^{\#}(s \cup i)) \xleftarrow{\bigoplus \forall (i)} \bigoplus h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i))$$

$$\cong \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

$$= \left\{ h_{p-1}(\nabla (s \cup i), \partial \nabla (s \cup i)) \right\}$$

assume $h_*=h_*((X_{i_*},A_{i_*})\times(\cdot))$, that each $R_{i_*}^{ii_*}$ is induced by the appropriate inclusion, and each sum or union is taken over $\{i|i\in I-s\}$. We have that $d_{1:j}^n\lambda_s=h_{v-1}(-)\partial_v$, etc., $=\sum \lambda_{s\cup i}R_{i_*}^{ii_*}\sigma(i)^{-1}$. Therefore,

$$(-1)^{jNU} d_{1;j}^{n} \Phi_{j}^{n} \chi(i_{*}; \theta) = d_{1;j}^{n} \lambda_{s} \sigma(i_{*})^{-1} \sigma(a_{*}) \theta$$

$$= \sum_{s \cup i} \lambda_{s \cup i}^{ii_{*}} \sigma(ii_{*})^{-1} \sigma(a_{*}) \theta$$

$$= \sum_{s \cup i} \lambda_{s \cup i} \sigma(ii_{*})^{-1} \sigma(a_{*}) (\theta|^{X_{ii_{*}}, A_{ii_{*}}})$$

$$= (-1)^{jNU} \cdot \Phi_{j}^{n+1} \delta^{n} \chi(i_{*}; \theta).$$

We have thus proved the square commutative, since the $\chi(i_*; \theta)$'s generate $C^n(\mathscr{P}; h_j(\bigcup \cdot))$. For the square involving ε , the same argument works with h_* redefined as $h_*((\bigcap_I X_i, \bigcap_I A_i) \times (\cdot))$, s replaced by \varnothing , and $d_{1:j}^n$ replaced by κ_g . \square

LEMMA 4. If $A_i = \emptyset$ (all $i \in I$), the following diagram commutes:

$$C^{NI}(\mathcal{P}; h_{j}(\cup \cdot)) \xrightarrow{\beta} h_{j-NI}\left(\bigcap_{I} X_{i}\right)$$

$$\cong \downarrow^{\Phi_{j}^{NI}} \qquad \cong \downarrow^{\Psi_{j-NI}}$$

$$E_{1;j}^{NI} \twoheadrightarrow E_{\infty;j}^{NI} \stackrel{=}{\to} F^{NI}G_{j-NI}/F^{NI+1}G_{j-NI} \longrightarrow G_{j-NI}$$

where β has the formula

$$C^{NI}(\mathscr{P}; h_{j}(\cup \cdot)) \cong h_{j}\left(\bigcup_{I} X_{i}\right) \to h_{j}\left(\bigcup_{I} X_{i}, \bigcup_{j < NI} X_{(j)}\right)$$

$$\xrightarrow{\cong} h_{j}\left(X_{(NI)}, \bigcup_{j < NI} X_{(j)} \cap X_{(NI)}\right)$$

$$\xrightarrow{(-1)^{(NI)^{2}}\beta_{1}\beta_{2}\cdots\beta_{NI}} h_{j-NI}\left(\bigcap_{I} X_{i}\right) \qquad (X_{(j)} = X_{i,j}),$$

each β_k ($1 \le k \le NI$) being the composite

$$\begin{array}{c} h_{j-NI+k}\bigg(\bigcap_{j\geq k}X_{(j)},\ \bigcup_{j< k}X_{(j)}\ \cap\bigcap_{j\geq k}X_{(j)}\bigg)\\ \qquad \qquad \qquad \downarrow^{\partial_{j-NI+k}}\\ h_{j-NI+k-1}\bigg(\bigcup_{j< k}X_{(j)}\ \cap\bigcap_{j\geq k}X_{(j)},\ \bigcup_{j< k-1}X_{(j)}\ \cap\bigcap_{j\geq k}X_{(j)}\bigg)\\ \cong \downarrow^{\operatorname{excision}}\\ h_{j-NI+k-1}\bigg(\bigcup_{j\geq k-1}X_{(j)},\ \bigcup_{j< k-1}X_{(j)}\ \cap\bigcap_{j\geq k-1}X_{(j)}\bigg). \end{array}$$

PROOF. Omitted. Consists of comparing each β_k with the appropriate form of $\sigma(i_i^I)^{-1}$ in one large commutative diagram. \square

Independence from U. Let $U^+ = U \oplus \{a\}$ for some point a apart from U, and indicate by a superscript + the U^+ -version of each of the notions (b)-(e). To prove that the choice of U is immaterial it suffices to prove (c) \cong (c⁺), (e) \cong (e⁺). We therefore define an isomorphism

$$l^{n,m}\!:\!h_p(L^n,\,L^m)\to h_{p^+}(L^{+n},\,L^{+m})$$

as follows, for n, j as in (c) and $m \ge n$:

$$\begin{split} h_p(L^n,L^m) &= \boldsymbol{h}_p^{(n.m)} \bigg(\partial \bigwedge_{\{a\}} T, \{*\} \bigg) \\ &\xrightarrow{\frac{\partial_{p+1}^{-1}}{\cong}} \boldsymbol{h}_{p+1}^{(n.m)} \bigg(\bigwedge_{\{a\}} T, \, \partial \bigwedge_{\{a\}} T \bigg) \xrightarrow{\cong} h_{p+1}(L^{+n}, L^{+m}). \end{split}$$

Here $h_*^{(n,m)}$ is the general homology theory of based compact pairs (Y,B) with formula $h_*^{(n,m)}(Y,B) = h_*(L^n(Y),L^m(Y) \cup L^n(B)), L^n(Y)$ being $X \times C \wedge Y \cup \bigcup_{s \subset I} [\bigcup_s A_i \times \nabla s \wedge Y] \cup \bigcup_{s \subset I; Ns \geq n} [\bigcup_s X_i \times \nabla s \wedge Y].$ Then, $(-1)^{j-n-1}l^{n,n+r}$ induces an isomorphism $E_{r;j}^n \to E_{r;j}^{+n}$ $(n,j \in \mathbb{Z}; r=1,2,\cdots)$ that carries $d_{r;j}^n$ into $d_{r;j}^{+n}$, Φ_j^n (for r=1) into Φ_j^{+n} , etc., as required. We assume that $a_+^+ = a_*a$.

Functoriality. Constructing (a) is more difficult than constructing the spectral sequence of a cover in that the underlying spaces (b) do not depend functorially on (X, I, \mathcal{P}) . U has been introduced as a remedy.

We assume that a morphism from (X, I, \mathcal{P}) to another such triple $(Y, J, \mathcal{Q}), \mathcal{Q}$ being a finite family $\{(Y_j, B_j) | j \in J\}$ of subspace pairs in a space Y, is a map $f: X \rightarrow Y$ of spaces together with a map $\pi: J \rightarrow I$ of sets such that $(fX_{\pi j}, fA_{\pi j}) \subset (Y_j, B_j)$ $(j \in J)$. Evidently $C^n(\mathcal{P}; h_q(\bigcup \cdot))$ $(n, q \in \mathbb{Z})$ depends functorially on (X, I, \mathcal{P}) if $(f; \pi)$ is regarded as inducing the map $C^n(f; \pi): C^n(\mathcal{P}; h_q(\bigcup \cdot)) \rightarrow C^n(\mathcal{Q}; h_q(\bigcup \cdot))$ with the formula $(C^n(f; \pi)\xi)^{j_*} = h_q(f; \pi)^{j_*}\xi^{\pi j_*}$ $(\xi \in C^n(\mathcal{P}; h_q(\bigcup \cdot)), j_* \in S_n(J)), h_q(f; \pi)^{j_*}$ being the homomorphism $h_q(X_{\pi j_*}, A_{\pi j_*}) \rightarrow h_q(Y_{j_*}, B_{j_*})$ induced by $f|_{X_{\pi j_*}}$. Similarly, $h_*(\bigcap_I X_i, \bigcap_I A_i)$ is functorial, the induced map to be denoted $h_*(f; \cap)$.

Let primes signify the (Y, J, \mathcal{Q}) -version of the notions (b)-(e). To show that (c), Ψ_* , Φ_*^* depend functorially on (X, I, \mathcal{P}) , we need only produce a homomorphism of (c) to (c') which, when considered along with $C^*(f; \pi)$ and $h_*(f; \cap)$, maps Ψ_* , Φ_*^* to Ψ_*' , $\Phi_*'^*$ respectively. It is easy to see that this map of (c) to (c') is a fortiori unique and functorially dependent on the morphism $(f; \pi)$.

We start by assuming $U' = U \supset I \oplus J$. Define $\omega : \bigwedge_U T \to \bigwedge_U T$ to be the involution $\bigwedge_{U = (\pi J \cup J)} 1_T \bigwedge_{\pi J} \omega_i$, where, for each $i \in \pi J$,

$$\omega_i \left(t_i \wedge \bigwedge_{\pi^{-1}(i)} t_j \right) = m \wedge \bigwedge_{\pi^{-1}(i)} (t_j t_i / m)$$

 $(t_i, t_j \in T \text{ for } j \in \pi^{-1}\{i\})$, m being $\max_{\pi^{-1}\{i\}} t_j$. It is easily shown that $\omega \nabla \{i\} = \bigcup_{\pi^{-1}\{i\}} \nabla \{j\}$ for $i \in \pi J$, while $\omega \nabla \{i\} \subset C'$ for $i \in I - \pi J$. The consequence is $(f \times \omega) L^n \subset L'^n$ $(n \in \mathbb{Z})$, with an induced homomorphism $l^{n,m} : h_p(L^n, L^m) \to h_p(L'^n, L'^m)$ $(m \ge n)$. The map $(-1)^{\text{number of members in } \pi J}$. $l^{n,n+r}$ induces the required $E^n_{r,j} \to E'^n_{r,j}$ $(n,j \in \mathbb{Z}; r=1,2,\cdots)$. (The power of (-1) is the degree of ω .)

The homology sheaf. Let $\mathscr{P} = \{(X, A \cup (X - U^i)) | i \in I\} = \mathscr{P}_{\mathscr{U}}$ for some finite open cover $\mathscr{U} = \{U^i | i \in I\}$ of X, A being some subspace. Evidently

$$h_* \Big(\bigcap_I X_i, \bigcap_I A_i \Big) = h_*(X, A),$$

$$C^* (\mathscr{P}_{\mathscr{U}}; h_*(\bigcup \cdot)) = C^* (\mathscr{U}; h_*^{X.A}),$$

where $h_*^{X,A}$ is the graded presheaf $\{h_*(X, A \cup (X - \emptyset)) | \text{open } \emptyset \subseteq X\}$. Thus, we obtain a spectral sequence

(f)
$$E_{2;j}^n \cong H^n(\mathcal{U}; h_j^{X,A}) \Rightarrow h_{j-n}(X, A).$$

236 R. N. CAIN

For X compact, the direct limit of (f), as \mathcal{U} is refined, is a spectral sequence

(g)
$$E_{2;j}^n \cong H^n(X; \mathcal{A}_j^{X,A}) \Rightarrow h_{j-n}(X, A),$$

where $\ell_i^{X,A}$ is the induced sheaf of $h_i^{X,A}$. As A approximates an open set V from within, the direct limit of (g) is

(h)
$$E_{2;j}^n \cong H^n(X, V; \mathbb{A}_j^X) \Rightarrow h_{j-n}(X, V).$$

 \mathcal{A}_{*}^{X} is called the homology sheaf of X. If $\mathcal{A}_{j}^{X} \cong \{0\}$ except for $j=j_{0}$ (= some integer), e.g., if X is a j_{0} -manifold and h_{*} is standard, then (h) collapses to a family of isomorphisms

$$H^n(X, V; \mathbb{A}_{j_0}^X) \cong h_{j_0-n}(X, V) \qquad (n \in \mathbb{Z}).$$

(Compare to [2].)

REFERENCES

- 1. J. T. Schwartz, Differential geometry and topology, Courant Inst. of Math. Sci. Report, New York, 1966, Gordon and Breach, New York, 1968.
- 2. E. C. Zeeman, Dihomology. III. A generalization of the Poincaré duality for manifolds, Proc. London Math. Soc. (3) 13 (1963), 155-183. MR 27 #2980c.

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213

Current address: 411 South Graham Street, Pittsburgh, Pennsylvania 15232