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REMARKS  ON THE  CLASSIFICATION PROBLEM FOR

INFINITE-DIMENSIONAL  HILBERT LATTICES

RONALD  P.  MORASH

r
Abstract. A lattice satisfying the properties of a Hubert

lattice, but possibly reducible, possesses the relative center property.

The division ring with involution (D, *), which coordinatizes a

Hubert lattice satisfying the angle-bisection axiom and having

infinite dimension, is formally real with respect to the involution,

in particular having characteristic zero. Also D has the property

that finite sums of elements of the form ota* are of the form ßß*

for some ß G D.

1. Introduction. In this paper, we continue the project embarked

upon in our papers [6], [7], [8] and [9]. This project is a study of lattices

possessing the properties of being complete, orthocomplemented, atomis-

tic, irreducible, separable and infinite dimensional, M-symmetric, and

orthomodular. In [8], we christened such a lattice an infinite-dimensional

Hubert lattice. There are only three known examples of infinite-dimen-

sional Hubert lattices, namely the lattices of all closed subspaces of real,

complex, and quaterionic Hubert space. Our main question is whether

there are, in fact, any others. Our present results show that an arbitrary

infinite-dimensional Hubert lattice shares certain properties of the three

canonical lattices. Thus these results are consistent with the possibility

of the answer "no" to our main question. In §2, we prove that any Hubert

lattice (minus the assumption of irreducibility) has the relative center

property. Our proof uses a result of M. Janowitz. §3 employs the concept

of angle-bisection of orthogonal atoms, introduced in [9]. Here we show

that, if our lattice L satisfies the angle-bisection axiom, then the division

ring with involution coordinatizing L has several algebraic properties

which bring it more closely into resemblance with the three canonical

division rings.

2. The relative center property. It is well known that any interval

sublattice L(0, x) = {y g L:0^y^x}, L a Hubert lattice, x g L, is com-

plete, orthomodular, atomistic, M-symmetric, and separable. We show,
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in this section, that L(0, x) is also irreducible and that L(0, x) is a Hubert

lattice. We do this by means of the following result:

2.1. Theorem (The relative center property). Let L be a lattice

possessing all the properties of a Hubert lattice, except possibly irreducibility.

Then, for any x e L, the center of L(0, x) consists precisely of the set

{zAx:z is in the center of L).

Before giving the proof, we remark that this property is one of those

specified by S. S. Holland, Jr. [1, Theorem 4] as being valid in each of the

three canonical lattices, but failing for an arbitrary complete orthomodular

lattice. For x a finite element of L, the result is contained in Ramsay

[10]. In fact, the referee has pointed out that, using the terminology

of [10] and modifications of the proofs of some results of that paper, one

can derive the relative center property in any semifinite dimension lattice.

Our proof makes use of a result of M. Janowitz. In any complete ortho-

modular lattice, we say a S b in case aAb=0 and (aVb)Ay=(aAy)V

(bAy) for all y e L, and a V b in case (aWx)Ab=xAb for each x e L. It is

well known that V implies S in general, but Janowitz has proved [3,

4.4] that, in a complete orthomodular lattice L, S implies V if and only

if L has the relative center property. The arguments which follow show

that S implies V in any (possibly reducible) Hubert lattice. For the

remainder of this section, we assume that L has all the properties of a

Hubert lattice, except possibly irreducibility.

2.2. Lemma. Suppose a, b £ L with a S b, suppose that p, q are atoms

in L with p-%a and q=^b. Then, given y £ L with pd^y and q%.y, we can

conclude p^qyy.

Proof. Suppose that there exists y £ L such that p^y, q%y, and

p^qVy. Since p^y, we conclude, by the atomic exchange property

[5, Definition 7.8], that q<pyy. Thus p\ty=qVy and pAy=qAy=0, so

that/? and q are perspective [11, Lemma 3.2] and thus strongly perspective

(since L is finite modular, by [5, Lemma 27.9], we can apply the proof of

Lemma 3.1 of [11] to get this result). Thus, there exists an atom r such

that pVr=qVr=pVq and pAr=qAr=0. Now r^pVq^aVb so that

r = (aVb)Ar which, by hypothesis, equals (aAr)v(bAr). Note that either

aAr or bAr is 0, otherwise r^aAb=0. Also, not both a Ar and bAr are

0, otherwise r=(aA/-)v(eA/-)=0v0 = 0. Hence, aAr or bAr is 0, but not

both; or, putting it differently, either r^a or r^b, but not both. In the

first case, if r^a, then since p¿%a, we have pWr^a. But then pyq^a

so q¿^a, a contradiction, since we would then have q^aAb=0. In the

other case, if r^b, then q^b implies that qVr=b, so pVq^b, so p^b,

again a contradiction.
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2.3. Lemma. Suppose a, b G L with a S b. Let p, q be atoms in L with

p^a andq—^b. Then p Sq.

Proof.    Let y G Lbs arbitrary. There are two cases :

Case 1. If either p^y or q^y, then supposing for instance that p^y,

we would have that, since q and y form a modular pair (due to the finite

modularity of L),

(PVq)Ay=pV(qAy) = (pAy)V(qAy),

the desired conclusion.

Case 2. Suppose p%y and q%.y; so pAy=qAy=0. Thus, our goal, in

this case, is to prove (pVq)Ay=0. But, by Lemma 2.2, p£y and q%y

imply p%qVy. But then, by [5, Exercise 7.1], since p%qVy, we conclude

(qVp)Ay=qAy=0, as desired.

Proof of Theorem 2.1. Suppose that a,bGL with a S b. Let p, q

be atoms withp^a andq=b. We claim that/? V^ and thus, by [5, Theorem

11.7], that aVb. By Lemma 2.3, we have that p Sq. Expressed in the

notation of von Neumann [11, p. 32] in which D(a, b, c) symbolizes

(aVb)Ac=(aAc)v(bAc) and D'{a,b,c) denotes (aAb)Vc=(aVc)A(bVc),

we have T>(p, q, y) for any y g L. But since/» and q are finite and L is finite

modular, this implies D'{q,y,p) which, for the same reason, forces

D(y,p,q). But clearly, this is equivalent to D(p,y,q) which is precisely

(pWy)Aq=yAq,y arbitrary, which says/7 V q, as desired.

3. Angle-bisection in Hubert lattices and properties of the coordinatizing

division ring. In [9], we devised a lattice theoretic version of the bisection

of the angle between two orthogonal vectors in Hubert space, by a vector

lying in the plane they determine. We refer the reader to [9] for the rather

complicated details of that definition, but will make one notational

remark. If/? and q are orthogonal atoms in a Hubert lattice and r is a

third atom with r<pVq, we write r B (p,q) to denote that r bisects the

angle between p and q. Throughout this section, we assume that L is an

infinite-dimensional Hubert lattice satisfying the angle-bisection axiom;

that is, for any pair/7, q of orthogonal atoms in L, there exists an atom

r g L such that r B (/?, q). The results of this section specify properties

of the division ring with involution (D, *) which coordinatizes L [5,

Theorem 34.5], properties which are a consequence of the angle-bisection

property and infinite dimensionality in L. In [9], we proved a theorem

(2.10) which said, essentially, that if there exists a vector of a given

"length" in one direction in V (V being the left vector space over D whose

existence is guaranteed in [5, 34.5]), then there exists a vector ofthat same

length in any direction. This property of {{D, *), V, (•, •)) is, in fact,

equivalent to the validity of the angle-bisection axiom in L. In this section,
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we will prove further that, under these same conditions, D is formally

real with respect to *, hence having characteristic zero, and that the sum

of finitely many elements of the form aa* in D has that same form.

Our ability to derive these results depends on the fact that, via angle-

bisection, we can prove that there exists a vector of unit length in every

direction. Before we can do this, we must know that there exists at least

one unit vector in L, so we will make some remarks about "scaling the

form." By [5, 34.5], there exists, for the given L, ((/), *), V, (•, •)) such

that L is ortho-isomorphic to the lattice L±((D, *), V, (•, •)) of all _]_-

closed subspaces of V, J_ being the orthogonality relation induced by the

conjugate-bilinear, Hermitian, nonisotropic form (■, •). Now the involu-

tion * on D and the form (•, •) on V are not uniquely determined by L,

in fact, for any selfadjoint element y £ D, X* =y~1X*y is an involutory

anti-automorphism of D and (x,y) =(x,y)y is a conjugate-bilinear,

Hermitian, nonisotropic form on V such that L is also ortho-isomorphic

to L((D, * ), V, (•, •) ). We claim that there exists a vector of length 1

in V, for if not, letting e be an arbitrary nonzero vector in V, scale the

form (•, •) to (•, ■) =(•, -)(e, e)-1, noting that (e, e)-1 is a selfadjoint

element of D. Then (e, e)~ =(e, e)(e, e)"1=l. By [9,2.10], if/is_any

vector in V orthogonal to e, there exists a £ D such that (of, of) =

(e, e) = 1. From this, we conclude easily that there exists, in V, a vector of

unit length in every direction.

3.1. Theorem. Let L be an infinite-dimensional Hubert lattice satis-

fying the angle-bisection axiom, (a) Given n scalars, Xx, • • ■ , Xn in D with

2j/l* + - • - + XnXt=0, necessarily A,=0 for all i=l, • ■ • , n. In particular,

the characteristic of D is 0. (b) Given any Xu • • • , Xn £ D, there exists

yeD such that AiAf-f-- • - + XnX*=yy*. (In the case * = identity, this

says that the sum of squares is a square.)

Proof. By the above remarks, we can express V as the countably

infinite join of orthogonal atoms {pl7p2, • • •} where/?i = Z>ei and (et, et) —

1 for all i=\, 2,

(a) Given any Xu ■ • • , Xn in D with XXX% + - • ■ + XnXt=Q>, then

(Vi + • • • + Xnen, Vi + • • • + Xnen)— = 0

so that Aie,-!-- ■ --\-Xnen is the zero vector (since (•, •) is nonisotropic),

so that /l¿=0 for all /= 1, • • • , n.

(b) Given any Xu---,XneD, we can find, by [9, 2.10], y £ D such

that

KK + • • • + XnX* = (Vi + • • • + Xnen, V, + • • • + Xnen)—

= y(en+i, en+1)~y* = yy*,

as desired.
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4. Concluding remarks. There is a related ring-theoretic problem,

which has been formulated by S. S. Holland, Jr. [2]. Holland's results,

for the ring case, have suggested further properties of (D, *) which one

might hope to derive in the setting of an infinite-dimensional Hubert

lattice satisfying the angle-bisection axiom. Two important questions are

whether, under the assumptions of §3, it is true that (i) for any a e D,

there exists a selfadjoint ß e D such that ¿S2 = aa* and ß doubly commutes

with oca*, and (ii) every selfadjoint element in D is central?
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