FORCING AND MODELS OF ARITHMETIC¹

S. G. SIMPSON

ABSTRACT. It is shown that every countable model of Peano arithmetic with finitely many extra predicates (or of ZFC with finitely many extra predicates) is a reduct of a pointwise definable such model.

This note applies the forcing method to a question concerning definability in models of Peano arithmetic.

THEOREM. Let $M = \langle |M|, +, \cdot \rangle$ be a countable model of Peano arithmetic.² Then there is a set $U \subseteq |M|$ such that

(i) $\langle M, U \rangle$ satisfies the first order induction schema for formulas containing an extra predicate U(x);

(ii) every element of |M| is first order definable in $\langle M, U \rangle$.

PROOF. A condition is an *M*-finite sequence of 0's and 1's, i.e. a mapping $p:\{b|b < {}^{M}a\} \rightarrow \{0, 1\}$ such that $a \in |M|$ and *p* is coded by an element of |M|. We use p, q, \cdots as variables ranging over conditions. A set of conditions is *dense* if every condition is extended by some condition in the set. Let $\langle a_n | n < \omega \rangle$ enumerate the elements of |M|. Let $\langle D_n | n < \omega \rangle$ enumerate the dense sets of conditions which are first order definable over *M* allowing parameters from |M|. It is safe to assume:

(*) the parameters in the first order definition of D_n are among a_0, a_1, \dots, a_{n-1} .

Define a sequence of conditions $\langle p_n | n < \omega \rangle$ by $p_0 = \emptyset$; $p_{2n+1} =$ the $<^{M-1}$ least condition $q \supseteq p_{2n}$ such that $q \in D_n$; $p_{2n+2} = p_{2n+1}$ followed by a string of a_n 0's followed by a 1. Define $U \subseteq |M|$ by letting $\bigcup \{p_n | n < \omega\}$ be the characteristic function of U. To prove that $\langle M, U \rangle$ satisfies first order induction, use the genericity of U.

[*Details.* Let L be the first order language with $+, \cdot, U(x)$, and constant symbols a for each $a \in |M|$. For θ a sentence of L define the (strong)

© American Mathematical Society 1974

Received by the editors May 16, 1973.

AMS (MOS) subject classifications (1970). Primary 02H05, 02H13, 02H20.

¹ This research was partially supported by NSF contract GP-24352.

² Peano arithmetic is the theory P of Shoenfield, *Mathematical logic*, Addison-Wesley, 1967.

forcing relation $p \Vdash \theta$ by

$p \Vdash a + b = c$	iff	a+b=c;
$p \Vdash \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{c}$	iff	$a \cdot b = c;$
$p \Vdash U(a)$	iff	p(a)=1;
$p \Vdash \theta_1 \vee \theta_2$	iff	$p \Vdash \theta_1 \text{ or } p \Vdash \theta_2;$
$p \Vdash \exists θ$	iff	$q \Vdash \theta$ for no $q \supseteq p$;
$p \Vdash \exists x \theta(x)$	iff	$p \Vdash \theta(a)$ for some $a \in M $.

Prove the basic forcing lemmas as usual. It remains to show that $\emptyset \Vdash \exists x \theta(x) \rightarrow \exists \text{ least } x \text{ such that } \theta(x)$.

Suppose $p \Vdash \exists x \theta(x)$. Then $p \Vdash \theta(a)$ for some $a \in |M|$. Working within M, define a sequence of conditions $\langle q_c | c <^M b + 1 \rangle$ where $b <^M a + 1$ as follows: $q_0 = p$; $q_{c+1} =$ the $<^M$ -least $q \supseteq q_c$ such that $q \Vdash \exists \theta(c)$; b = the $<^M$ -least c such that q_{c+1} is undefined. Then $q_b \supseteq p$ and $q_b \Vdash \exists \exists b$ is the least x such that $\theta(x)$.]

On the other hand, using (*), one easily shows by induction on n that p_{2n+1} , p_{2n+2} , and a_n are first-order definable in $\langle M, U \rangle$. This completes the proof.

REMARK. One can apply the same method to models of set theory to get the following theorem: Let $M = \langle |M|, \in^M \rangle$ be a countable model of ZFC, then there is a set $U \subseteq |M|$ such that

(i) $\langle M, U \rangle$ satisfies the first-order replacement schema for formulas containing an extra predicate U(x);

(ii) every element of |M| is first-order definable in $\langle M, U \rangle$.

This is an improvement of the theorem of U. Felgner, Fund. Math. 71 (1971), 43-62.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

194