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INEQUALITIES  FOR  POISSON  KERNELS
ON  SYMMETRIC  SPACES

ADAM   KORÁNYI1

Abstract. Every symmetric space of noncompact type has a

finite number of Furstenberg-Satake boundaries ; to each of these

there corresponds a Poisson kernel. Sharp Harnack-type inequalities

are proved and it is shown that the Poisson kernel, in appropriate

coordinates, is the square root of a rational function.

The purpose of this note is to prove sharp Harnack-type inequalities

for various forms of the Poisson kernels of symmetric spaces of non-

ompact type. The case of the Cartan domains with their Bergman-

Silov boundary has already aroused some interest: The Harnack inequal-

ities were proved for the classical domains by Tung [8], [9], and for

domains of tube type, using a classification-free Jordan algebra method,

by H. Resnikoff (unpublished). Here we will show (Proposition 2) that

the case of any Cartan domain can easily be settled using standard Lie

algebra machinery. Before that, in Proposition 1 we state more general

sharp inequalities for the Poisson kernel of any symmetric space with

respect to any of its Furstenberg-Satake boundaries. Finally, in Propo-

sition 3, we obtain more precise information about the Poisson kernel

expressed in orispherical coordinates; this result also leads to a simplified

proof of an estimate used by L. Lindahl [6]. Our basic techniques through-

out are those of Harish-Chandra [1]; we also make use of a relatively

simple lemma of Lindahl [6].

1. We follow the notations of [5]. X=G/K is a Riemannian symmetric

space of noncompact type, g = i-|-p the corresponding Cartan decom-

position of the Lie algebra, a maximal Abelian in p, t=>Q a Cartan

subalgebra of g. The restricted roots (restrictions of the tc-roots of gc to a)

form a root system, F is a corresponding simple system of roots, a+ the

positive Weyl chamber. Given a subset E<=^ F, a(E) is the subspace of a

annihilated by all À e E, 2pE is the sum of those positive restricted roots

Received by the editors June 12, 1973.

AMS (MOS) subject classifications (1970). Primary 22E30; Secondary 43A85.
Key words and phrases. Symmetric spaces, Furstenberg-Satake boundaries, bounded

symmetric domains.

1 Partially supported by NSF grant GP-28448.
© American Mathematical Society 1974

465



466 ADAM   KORÁNYI [April

which do not vanish on a(E). To E there corresponds a parabolic sub-

group B(E) of G and a Furstenberg-Satake boundary GjB(E), on which

K acts transitively. The corresponding Poisson kernel is given [4, Prop-

osition 1.2] for g e G, k e K, k e GjB(E), by

PE(g -o,k) = e-2».< W1*»

where 0 is the identity coset in G\K and H(g) is defined by g=k(g) •

exp H(g) ■ n(g) (Iwasawa decomposition).

Every point in X can be written ("in polar coordinates") as kxa ■ o

with kxeK, aeA+=expa+. Let W be the small Weyl group and let

s0 be the element in it that maps a+ onto — a+. The following is a general

form of the Harnack inequalities:

Proposition 1. Let ae A+ be fixed. For kx, k2e K we have the sharp

inequalities

exp{2pE(s0(log a))} ^ PE(kxa ■ o, k2) ^exp{2pii(log a)}.

When E=0 or when s0=— id, not however in the general case, the lower

bound is also equal to exp{ —2p£(log a)}. ■

Proof. The inequalities can be deduced from [1, Lemma 35] and

[6, Lemma 5.1]; we give here a simplified proof extracting the relevant

part from Harish-Chandra's argument [lj. By [6, Lemma 5.1], 2pE is

the restriction to o of the highest weight of a finite dimensional irreduc-

ible representation -r of Gc, the simply connected complexification of G.

Let cp be a highest weight vector of unit length (we use an inner product

for which tt(A) is Hermitian, tt(K) is unitary). Now Tr(N)cp = cp, and the

smallest eigenvalue of the positive operator tr(a~l) is equal to the recip-

rocal of the largest eigenvalue of 77(a), i.e. to exp{ — 2pE(log a)}. Writing

k=k\~1k2 it follows that

exp{2Pß(/i(a-1/c))} = Ka"1*)-?! ^ exp{-2pK(log a)}

which gives the desired upper bound. It is sharp, since equality holds

for k=e.
To get the lower bound let k0E K be such that s0=ad(k0)\a. Then

we have

eKP{2pK(H(a-'k))} = exp{2p£(fi(s0(O/c0/c))}

= IKs0(a""1))7T(rC0fc)95|l ^ exp{-2pEis0iloga))}

since the last expression gives the largest eigenvalue of ^„(¿r1)). Equality

holds for k=ko1, i.e. for kx=k2k0.
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The statement about the other expression for the lower bound follows

in the case E=0 by remarking that —i0 is a permutation of F, and so

p(s0H)= — p(H) for all H e a (cf. [1]). In the case s0=— id it is trivially

true for any E. That it is not always true can be seen by considering the

special case X=SL(3, R)/SO(3) (restricted root system A2) with E

consisting of a single element of F. This finishes the proof.

We want to specialize our result to the case of a Hermitian symmetric

space given as a bounded domain 3> in the canonical Harish-Chandra

realization. By an obvious multiplicative property it is enough to con-

sider the case where 2 is irreducible.

As is well known (e.g. [2, Chapter VIII, §7]) now g has a Cartan sub-

algebra h contained in I. For any l)c-root a, let Ea, Hx denote the usual

basis elements of gc. gc has a certain subspace p~ which is a complex

Euclidean space with Ad(K) acting on it unitarily; 2 is realized as a

domain in p~. There is a set *F of "strongly orthogonal" positive roots

such that 3> is equal to the set of points Ad(k) ^evr^E_v (0^rv<l,

k e K). The Bergman-Silov boundary 0 of 3) is the orbit of 2V E-v

under Ad(K). The Poisson kernel [3], written F(z, u), is a function on

3>xF. The Harnack inequaüties now take the following form.

Proposition 2. Let 3> be irreducible, of (complex) dimension n and

of rank I. Let z=Ad(k) 2 ru,Ev (0<rv<l). Then

n(^)"WU)sn(f±T
ve<r \i + >v vet \i ~ rv/

for all k e K, u e FI. These inequalities are sharp.

Proof. By Harish-Chandra's results (cf. [2, Chapter VIII]) ct =

2 RiEv+E_v) is a maximal Abelian subspace in p, and z corresponds to

the element ka ■ o of G\K with a=exp 2 tv(Ev+E_v), rv=tanh tv. As

proved by Moore [7] (and also briefly described in [5, p. 403]) there is an

automorphism of gc (the Cayley transform) which carries each Eyl+E_y,

to Hv; it carries the restricted roots to the restrictions of the hc-roots

to f)~=2 BHV. Writing x¥={fx, • • • , f{}, these restrictions are of the

form ±fj (each with multiplicity one), ±KVj±V*) (j<k, each with

the same multiplicity a>0), ±iy>j (with multiplicity 2¿^0). F can be

chosen as the set of all %(y>} — Wi+i) 0=j=l~l) together with ip¡ or %ipt

depending on whether b is zero or not; the subset E consisting of all

the iCfj — Wi+i) gives a G¡B(E) isomorphic with F.

There are now two ways of proving our assertions. One is to use [3,

Proposition 5.7] to compute F(z, u) for z~a ■ o, w~é and k0; from the

proof of Proposition 1 we know that these values are the desired sharp

bounds. The more interesting way, independent of [3] and still easy,
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is to explicitly evaluate 2p£(log a). For this we have to note that u(E) is

one-dimensional, and the Cayley transform carries it to the line spanned

by 2veY Hv. The positive restricted roots that do not vanish on this line

are f¡ (lá/íá/), HVj + V*) (j>k) and %y¡; their sum (with multiplicities)

is equal to (l+((l—l)/2)a+b) 2ve>F W- Evaluating this on 2 tvHw gives

2p£(loga)=(2+(/-|-l)a-|-2/3) 2 V Making use of the fact [7] that

p~ is spanned by certain of E_a and the restrictions of the a that occur

are y>j, KVi+Vit) (j<k, a times) ^tp¡ (b times) we see that this is also equal

to 2«// 2 V Now /-=tanh t implies e2t=(l+r)(l— rY1 and our formula

for the upper bound follows. The lower bound is its reciprocal since

—id e W, as one sees from the explicit description of the restricted root

system.

Remark. The Szegö kernel F(z, u) of 3 and the Poisson kernel are

in the following simple relationship :

Fiz, u) = \F(z, utIFiz, z)

and it is known [3, Proposition 5.7] that Fiz, z) = II(l-r^)-n/*. It

follows immediately that, for z, u as in Proposition 2, we have the sharp

inequalities

11(1 + rlTnl1 ̂  \F(z, u)\ ^ n(l - rlrn".

Analogous inequalities hold for the Bergman kernel, which is proportional

to a positive power of the Szegö kernel.

2. Returning to the case of an arbitrary symmetric space, let ñ(E)c

be the sum of all tc-root spaces qc_x such that <x>0, a|a(E)#0. Let

ñ(E)=ñ(E)cng. The function xpE(ñ) = exp{ — 2pE(H(ñ))} defined for

ñ e Ñ(E)=exp ñ(E) is just another form of the Poisson kernel and plays

an important role in proving Fatou-type theorems [5], [6]. We shall

prove that tpE2, and even ips1 if E= 0 , is a sum of squares of polynomials

(in canonical coordinates) and assumes its minimum value 1 only when

ñ=e. On one hand, this can be regarded as a sharp Harnack inequality.

On the other, looking at behavior at infinity, this implies the key estimates

of Lindahl [6, Lemmas 5.2, 5.3] by an obvious compactness argument.

Just as in Lindahl's case all that is needed is that 2pE, resp. p0, is the

restriction of a highest weight with certain properties.

Proposition 3. Let m be the highest weight of a finite-dimensional

irreducible representation tt such that a)(//a)>0/or all simple tc-roots a

that do not vanish on a(E). Then, for all ñ e N(E),

exp{2oj(H(ñ))} =1+2 lp»(")l2
i

with a finite number of polynomials Pj whose only common zero is at ñ=e.
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Proof. We use an inner product on the representation space as in

Proposition 1 and take an orthonormal basis {<px, ■ • • , <pn} such that

each q>¡ is in the weight space for some weight co,- and (Oj^Wj. for j>k.

So (p=<px is a highest weight vector. ñ(E) is represented by strict tri-

angular matrices, N(E) by unipotent matrices. Each matrix entry 7r(«)Jjfc

is a polynomial in ñ e Ñ(E), since the Campbell-Hausdorff formula is

finite on nilpotent Lie algebras. We have

2= 2 w«)«i2-

Now 7r(ñ)u=l since Tr(n) is unipotent; Pj(ñ)=-n-(ñ)jX (j>l) are poly-

nomials with P¡(e)=0, since Tr(e) = id. We have to show only that P¡(ñ)=0

for ally>l implies ñ=e, i.e. that ir(ñ)q)=cp implies ñ=e.

Assume n(ñ)<p = <p. Writing «=exp X (Xeu(E)) we have that

exp ttr(X)<p—ç> is a (vector-valued) polynomial in / vanishing for r=0, 1,

2, • • • , hence identically zero. It follows that ir(X)(p = 0; we must show

that X=0. Taking a basis {X_„} of ñ(E) such that X_x e q^ (a>0, oi\a{E)?¿

0) it suffices to show that ^(X^çpjLO for each a. Now it is well known

that the vectors Tr(X_xy(p for 0^y'^«(//a) form a basis of an irreducible

module for the three-dimensional Lie algebra generated by {X_x, Hx, Xx}.

So tr(X_x)<p^0 when w(Hx)>0; this however follows from our hypothesis

by writing a as a combination of simple roots.
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