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ON MODULAR LATTICES OF ORDER DIMENSION TWO

RUDOLF WILLE

ABSTRACT. In this note, it is shown that a modular lattice
has order dimension =2 if and only if it"contains no subset iso-
morphic to one of five described partially ordered sets.

The order dimension of a partially ordered set (S, <) is defined as the
smallest cardinal number m such that the relation < is the intersection
of m (linear) orders on S (Dushnik and Miller [3]). For the order dimen-
sion we have the following compactness theorem (Harzheim [4] and also

the review of K. A. Baker, MR 43 #113):

THEOREM 0. Let (S, <) be a partially ordered set, and let n be a natural
number. If every finite subset of S has order dimension =n, then (S,<)
also has order dimension <n.

In Baker, Fishburn and Roberts [2], it is shown that for n=2 there is
no finite list of partially ordered sets with the property: A partially ordered
set (S, <) has order dimension =n if and only if no subset of S is iso-
morphic to one of the partially ordered sets in the list. Moreover, there
does not exist such a list for lattices. The principal result of this note is
that for modular lattices and »=2 we have a checking list with five
finite partially ordered sets. Using Dilworth’s theorem, Baker has proved
in [1] that a (finite) distributive lattice has order dimension =< if and
only if it does not contain the partially ordered set of atoms and coatoms
of a boolean lattice with 2" elements. For the proof of the principal
result we need this theorem in the case n=2, hence we give a direct proof
for this case without using Dilworth’s theorem.

If a partial order = on S is the intersection of orders C,, we say that
(S, =) is represented by the chains (S, C)); if S:={s;, -, s,}, we de-
scribe a chain (S, C) by the sequence s; s, - - *s; Where (s;, s;) € Cif
and only if j=Zk.
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LeMMA 1.  The following partially ordered sets have order dimension 3:

Proor. The following can be easily checked:
B, is represented by

a,a:b3a5b,b,,  ayasb,a,b,b; and  aza,b,a,b5b,,
D3 is represented by

ab,c,bycobscsc,,  abscsbacobicie, and  abybybycyccocs,
Dj is represented by
a1b101b5C3a5h5C5,  azbaaibscshicics and  a1a50,b:b505¢:C5.

Now, we have to prove that there is no representation of Bs, D® and D?
by any two chains. For B; this follows from the fact that, for every chain
of a representation of Bj;, there is at most one i € {1, 2, 3} with b, - - - a,
in that chain. Suppose D*® can be represented by two chains. Then,
because of b, £ ¢, for m#n4, those two chains have to be of the form

RS R IREEY JER R RN FEERF e
and
cobgrrrer byt by (), k= {1,2,3)),
which implies that c;--- ¢, is in both chains; this contradicts c;Fc,
in D3. Therefore, D® cannot be represented by two chains. Suppose

D} can be represented by two chains. Then, because of a,¥¢, and a,£c,,
those two chains have to be of the forma; - - ¢, - c;a, -+ * ¢, and

Aoy ° " CaCiC; (i, jy = {1,3)),

which implies that b,---¢; is in both chains; this contradicts b,£c;
in D}. Therefore, D cannot be represented by two chains.

If D, is the dual of D? and D} the dual of D}, Lemma 1 also shows that
D, and Dj have order dimension 3. For Lemma 2 we need the following
notion: An element ¢ of a lattice L with 0 is called a chain element of L
if the interval [0, c] is a chain.
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LEMMA 2. Let L be a finite distributive lattice having no subset iso-
morphic to By, and let ¢ be a maximal chain element of L. Then L\[O, c]
is a sublattice of L.

PrOOF. Obviously, the join of any two elements of L\[0, c] is again
in L\[0, c]. Suppose there are a, b € L\[0, c] with aAb € [0, c]. Since ¢
is a maximal chain element of L, there exist @, <a and b, <b with a, 2 c£b,
and a,fczb,. Obviously, a,Ab, € [0, c]. We can assume, without loss
of generality, that a,Ac=b,Ac. Let a, and ¢, be covers of a;Ac with
a,=<a, and c¢,=c, and let b, be a cover of b;Ac with b,<b,. Then b,V
(a;Ac) covers a;Ac; furthermore, a,#b,V(a,Ac)#c,#a,. By distributivity,
it follows that {a,, byV(a;Ac), ¢y, b3V ey, AV ey, a3Vhy} is a subset of L
isomorphic to Bj. This is a contradiction to our assumption. Therefore,
the meet of any two elements of L\[0, ¢] is again in L\[0, c], too.

THEOREM 3. A distributive lattice has order dimension =2 if and only
if it does not contain a subset isomorphic to Bj.

Proor. By Lemma 1, a distributive lattice of order dimension =<2
cannot contain a subset isomorphic to B;. Now, let L be a distributive
lattice having no subset isomorphic to B;. First we prove by induction
on the cardinality of L: If L is finite and if c is any chain element of L,
then L can be represented by two chains a,a, * - - @, and b;b, * - - b, such
that [0, c]={a,, a,, - * - , a;} for some i=n. Let d be a maximal chain ele-
ment of L with ¢c=<d. By Lemma 2, L\[0, d] is a sublattice of L, which has
a least element v. Since L does not contain a subset isomorphic to By,
dVvv is a chain element of L\[0, 4]. By the induction hypothesis, L\[0, d]
can be represented by two chains aa,‘:-a, and bb,-: b, with
[v, dvvl={aa,, * - - , a;} for some j=<m. Now, it can be easily checked
that L is represented by the two chains

O0:---(dAa)dAray): - (dAa)aa,- - ay,
and
0---(dAaby, by, 1(dAa)by, by _1(dAaby - by

with a;=bd, for 1=i=<j. This proves that L has order dimension =2
if L is finite. Now, let L be infinite. Since every finite subset of L generates
a finite sublattice of L, each finite subset of L has order dimension <2. But
then the whole lattice L also has order dimension =2 by Theorem O.

LemMA 4. Let M be a modular lattice having no subset isomorphic to
D3, If {a, c;, ¢, 3, €} Is a five-element, nondistributive sublattice of M
with a<c;<e, then a is covered by c; and e covers c; (i=1, 2, 3).
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PRrROOF. Suppose a is not covered by ¢; or e does not cover c; for some i.
Then, by modularity, there is an element b, in M with a<b,;<c¢,. Define
by = (b,Veg)Acy, by := (byVe))Ac; and ¢ := (b,Ve)A(b1Veg). Since
a<b,<c; and c,Ac,=b, for 1 £i<3, the subset {a, b,, bs, by, ¢, Ca, C3, C4}
is isomorphic to D3,

An element a of a lattice L is said to be irreducible if b,, c;<a implies
b,Vey<a and if a<b,, ¢, implies a<b,Ac,. Thus, irreducible elements are
exactly those elements which can be deleted from a sublattice with the
end result that a sublattice remains. Especially, (L) := {b € L|b is not
irreducible} is a sublattice of L.

THEOREM 5. For a modular lattice M the following conditions are
equivalent:
(i) M has order dimension <2.
(ii) N(M) is distributive and has order dimension <2.
(iii) M does not contain a subset isomorphic to By, D3, D;, D} or D;.

PROOF. Since the order dimension of any subset of M cannot exceed
the order dimension of M, (i)=-(iii) is a consequence of Lemma 1.

(iii)=-(ii): Let {a, by, b,, b,, ¢} a five-element, nondistributive sublattice
of M. By Lemma 4, a is covered by b, and ¢ covers b, (i=1, 2, 3). Since
no subset of M is isomorphic to D3, Dy, D} or Dj, it follows that at least
one of the b,’s has to be irreducible. Therefore, {a, b,, b,, b3, ¢} is not
contained in N(M). Thus N(M) is distributive and has order dimension
=2 by Theorem 3.

(ii)=-(i): Since N(M) is distributive, every five-element, nondistributive
sublattice M3 of M must contain an irreducible element ¢, and we get
by the same construction as in the proof of Lemma 4 that ¢ has a cover ¢
and a subcover ¢ in M with ¢, c__ € M;. Let S be a sublattice of M
generated by a finite subset F, and let I be the set of all irreducible elements
of F contained in a five-element, nondistributive sublattice of M. We
define I :={c |cel}and I := {c_|cel}. Since (F\)UI—UI_is
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contained in the distributive sublattice (L), the finite set (F\I)UI  UI_
generates a finite sublattice T of M. Furthermore, we have ave=avc—
and bAc=bAc__ for a,be M and c €I if avcs#c7#bAc. Hence S= TUI,
and therefore S is finite. Thus, every finitely generated sublattice of M is
finite. Therefore, by Theorem 0, we can assume that M is finite. Let D
be a maximal distributive sublattice of M with N(M)< D. By Theorem 3
and (ii), D has order dimension =2. Now, we prove for every subset
E2= D by induction on the cardinality of E that E has order dimension
=2. Suppose we have already seen that E can be represented by two chains
a,a, - -a,and bb, - - - b,. If there is a c € M with ¢ ¢ E, cis an irreducible
element contained in a five-element, nondistributive sublattice. Since D
is a maximal distributive sublattice containing (L) and since the length
of the interval [c__, ¢ ]is two, there are exactly four elementsc__, b,d, ¢
in the intersection DN[c_, ¢ ]. There is, without loss of generality,
i<k with a;=b and a;,=d. Let j be the smallest number with i<j and
a;¥a;. Furthermore, there is /<n with b,=d and b,=b. Let m be the
greatest number with m<n and b, £5,.

\\ //
AN LN A /
NeX N -/ ¥ /U

LN A

N e

a;=b_ =b d=b, =a
/ AN
A - LN
S ¥ N N\
J/ el X
/ AN

/ AN

Now, we assert that EU{c} is represented by a, - - - a;_;ca; * - - a, and
b+ buchmyy b, Since x<c and c<y implies x<c_ and ¢ =y,
the two orders extend the partial order on £U{c}. Next we have to prove
that a,=b, with j<p and m<q implies c<a,=b,(c Za,=b,). Suppose
¢ £a,=b,. Then we have a,%¥a, or b,£b,. If a,Xa,, by i<p, it follows
q<n. Because of m<gq, we get a,=b,=<b,=a; which contradicts i<p. If
a,<a,, we must have b,£b, This forces p<k because of /<g. Since
a;=a,, we have b,<b, and hence n=gq. If we let ¢ =b,=a, and a;=b,,
then k<t, n<s, and w<n. Thus w<g, w<s, and j<t because p<k.
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Hence ¢ fa,, a;<a, and a,f¥a; implies a;<a, and a;=c . Since ¢
coversa,, we geta;<a,Ac =a;whichcontradictsi<j. Thus, ¢~ Za,=b, is
proved. Dually, it follows that a,=b, with ¢<j and p <m implies a,=b,<
¢ (a,=b,=c_). This finishes the proof that EU{c} is represented by a, - -
a,_jca;---a,and b, -+ - byuch,,,, ¢ - - b,. Therefore, M has order dimension
=2.

COROLLARY 6. Every finitely generated modular lattice of order
dimension =2 is finite.

PROBLEM. For which natural numbers nZ3 does there exist a finite
list of partially ordered sets (S;, <;) such that a modular lattice has order
dimension =n if and only if it contains no subset isomorphic to some of the
(Si» =)-
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