ON MODULAR LATTICES OF ORDER DIMENSION TWO

RUDOLF WILLE

ABSTRACT. In this note, it is shown that a modular lattice has order dimension ≤ 2 if and only if it contains no subset isomorphic to one of five described partially ordered sets.

The order dimension of a partially ordered set (S, \leq) is defined as the smallest cardinal number m such that the relation \leq is the intersection of m (linear) orders on S (Dushnik and Miller [3]). For the order dimension we have the following compactness theorem (Harzheim [4] and also the review of K. A. Baker, MR 43 #113):

THEOREM 0. Let (S, \leq) be a partially ordered set, and let n be a natural number. If every finite subset of S has order dimension $\leq n$, then (S, \leq) also has order dimension $\leq n$.

In Baker, Fishburn and Roberts [2], it is shown that for $n \ge 2$ there is no finite list of partially ordered sets with the property: A partially ordered set (S, \le) has order dimension $\le n$ if and only if no subset of S is isomorphic to one of the partially ordered sets in the list. Moreover, there does not exist such a list for lattices. The principal result of this note is that for modular lattices and n=2 we have a checking list with five finite partially ordered sets. Using Dilworth's theorem, Baker has proved in [1] that a (finite) distributive lattice has order dimension $\le n$ if and only if it does not contain the partially ordered set of atoms and coatoms of a boolean lattice with 2^{n+1} elements. For the proof of the principal result we need this theorem in the case n=2, hence we give a direct proof for this case without using Dilworth's theorem.

If a partial order \leq on S is the intersection of orders C_i , we say that (S, \leq) is represented by the chains (S, C_i) ; if $S := \{s_1, \dots, s_n\}$, we describe a chain (S, C) by the sequence $s_{i_1}s_{i_2}\cdots s_{i_n}$ where $(s_{i_j}, s_{i_k}) \in C$ if and only if $j \leq k$.

Received by the editors October 16, 1972 and, in revised form, January 19, 1973. AMS (MOS) subject classifications (1970). Primary 06A30; Secondary 06A10. Key words and phrases. Partially ordered set, order dimension, lattice, modular, distributive, finitely generated.

[©] American Mathematical Society 1974

LEMMA 1. The following partially ordered sets have order dimension 3:

PROOF. The following can be easily checked: B_3 is represented by

$$a_1a_2b_3a_3b_1b_2$$
, $a_2a_3b_1a_1b_2b_3$ and $a_3a_1b_2a_2b_3b_1$,

 D^3 is represented by

$$ab_1c_1b_2c_2b_3c_3c_4$$
, $ab_3c_3b_2c_2b_1c_1c_4$ and $ab_1b_2b_3c_4c_1c_2c_3$,

 D_1^2 is represented by

$$a_1b_1c_1b_3c_3a_2b_2c_2$$
, $a_2b_2a_1b_3c_3b_1c_1c_2$ and $a_1a_2b_1b_2b_3c_2c_1c_3$.

Now, we have to prove that there is no representation of B_3 , D^3 and D_1^2 by any two chains. For B_3 this follows from the fact that, for every chain of a representation of B_3 , there is at most one $i \in \{1, 2, 3\}$ with $b_i \cdots a_i$ in that chain. Suppose D^3 can be represented by two chains. Then, because of $b_m \leq c_n$ for $m \neq n \neq 4$, those two chains have to be of the form

$$\cdots b_i \cdots c_i \cdots b_i \cdots c_i \cdots b_k \cdots c_k \cdots$$

and

$$\cdots b_k \cdots c_k \cdots b_j \cdots c_j \cdots b_i \cdots c_i \cdots (\{i, j, k\} = \{1, 2, 3\}),$$

which implies that $c_j \cdots c_4$ is in both chains; this contradicts $c_j \not \leq c_4$ in D^3 . Therefore, D^3 cannot be represented by two chains. Suppose D_1^2 can be represented by two chains. Then, because of $a_2 \not \leq c_1$ and $a_2 \not \leq c_3$, those two chains have to be of the form $a_1 \cdots c_i \cdots c_j a_2 \cdots c_2$ and

$$a_2a_1 \cdot \cdot \cdot c_2c_ic_i$$
 ({i, j} = {1, 3}),

which implies that $b_i \cdots c_j$ is in both chains; this contradicts $b_i \not \leq c_j$ in D_1^2 . Therefore, D_1^2 cannot be represented by two chains.

If D_3 is the dual of D^3 and D^1_2 the dual of D^2_1 , Lemma 1 also shows that D_3 and D^1_2 have order dimension 3. For Lemma 2 we need the following notion: An element c of a lattice L with 0 is called a *chain element* of L if the interval [0, c] is a chain.

LEMMA 2. Let L be a finite distributive lattice having no subset isomorphic to B_3 , and let c be a maximal chain element of L. Then $L\setminus[0, c]$ is a sublattice of L.

PROOF. Obviously, the join of any two elements of $L\setminus[0,c]$ is again in $L\setminus[0,c]$. Suppose there are $a,b\in L\setminus[0,c]$ with $a\wedge b\in[0,c]$. Since c is a maximal chain element of L, there exist $a_1 \le a$ and $b_1 \le b$ with $a_1 \not\ge c \not\le b_1$ and $a_1 \not\le c \not\ge b_1$. Obviously, $a_1 \wedge b_1 \in [0,c]$. We can assume, without loss of generality, that $a_1 \wedge c \ge b_1 \wedge c$. Let a_2 and c_2 be covers of $a_1 \wedge c$ with $a_2 \le a_1$ and $c_2 \le c$, and let b_2 be a cover of $b_1 \wedge c$ with $b_2 \le b_1$. Then $b_2 \vee (a_1 \wedge c)$ covers $a_1 \wedge c$; furthermore, $a_2 \ne b_2 \vee (a_1 \wedge c) \ne c_2 \ne a_2$. By distributivity, it follows that $\{a_2, b_2 \vee (a_1 \wedge c), c_2, b_2 \vee c_2, a_2 \vee c_2, a_2 \vee b_2\}$ is a subset of L isomorphic to B_3 . This is a contradiction to our assumption. Therefore, the meet of any two elements of $L\setminus[0,c]$ is again in $L\setminus[0,c]$, too.

THEOREM 3. A distributive lattice has order dimension ≤ 2 if and only if it does not contain a subset isomorphic to B_3 .

PROOF. By Lemma 1, a distributive lattice of order dimension ≤ 2 cannot contain a subset isomorphic to B_3 . Now, let L be a distributive lattice having no subset isomorphic to B_3 . First we prove by induction on the cardinality of L: If L is finite and if c is any chain element of L, then L can be represented by two chains $a_1a_2\cdots a_n$ and $b_1b_2\cdots b_n$ such that $[0,c]=\{a_1,a_2,\cdots,a_i\}$ for some $i\leq n$. Let d be a maximal chain element of L with $c\leq d$. By Lemma 2, $L\setminus [0,d]$ is a sublattice of L, which has a least element v. Since L does not contain a subset isomorphic to B_3 , $d\vee v$ is a chain element of $L\setminus [0,d]$. By the induction hypothesis, $L\setminus [0,d]$ can be represented by two chains $a_1a_2\cdots a_m$ and $b_1b_2\cdots b_m$ with $[v,d\vee v]=\{a_1a_2,\cdots,a_j\}$ for some $j\leq m$. Now, it can be easily checked that L is represented by the two chains

$$0 \cdots (d \wedge a_1)(d \wedge a_2) \cdots (d \wedge a_j)a_1a_2 \cdots a_m$$

and

$$0\cdot\cdot\cdot(d\wedge a_1)b_{k_1}\cdot\cdot\cdot b_{k_2-1}(d\wedge a_2)b_{k_2}\cdot\cdot\cdot b_{k_i-1}(d\wedge a_i)b_{k_i}\cdot\cdot\cdot b_m$$

with $a_i = b_{k_i}$ for $1 \le i \le j$. This proves that L has order dimension ≤ 2 if L is finite. Now, let L be infinite. Since every finite subset of L generates a finite sublattice of L, each finite subset of L has order dimension ≤ 2 . But then the whole lattice L also has order dimension ≤ 2 by Theorem 0.

LEMMA 4. Let M be a modular lattice having no subset isomorphic to D^3 . If $\{a, c_1, c_2, c_3, e\}$ is a five-element, nondistributive sublattice of M with $a < c_i < e$, then a is covered by c_i and e covers c_i (i=1, 2, 3).

PROOF. Suppose a is not covered by c_i or e does not cover c_i for some i. Then, by modularity, there is an element b_1 in M with $a < b_1 < c_1$. Define $b_2 := (b_1 \lor c_3) \land c_2$, $b_3 := (b_1 \lor c_2) \land c_3$ and $c_4 := (b_1 \lor c_2) \land (b_1 \lor c_3)$. Since $a < b_i < c_i$ and $c_i \land c_4 = b_i$ for $1 \le i \le 3$, the subset $\{a, b_1, b_2, b_3, c_1, c_2, c_3, c_4\}$ is isomorphic to D^3 .

An element a of a lattice L is said to be *irreducible* if $b_1, c_1 < a$ implies $b_1 \lor c_1 < a$ and if $a < b_2, c_2$ implies $a < b_2 \land c_2$. Thus, irreducible elements are exactly those elements which can be deleted from a sublattice with the end result that a sublattice remains. Especially, $\mathfrak{N}(L) := \{b \in L | b \text{ is not irreducible}\}$ is a sublattice of L.

THEOREM 5. For a modular lattice M the following conditions are equivalent:

- (i) M has order dimension ≤ 2 .
- (ii) $\mathfrak{N}(M)$ is distributive and has order dimension ≤ 2 .
- (iii) M does not contain a subset isomorphic to B_3 , D^3 , D_3 , D_1^2 or D_2^1 .

PROOF. Since the order dimension of any subset of M cannot exceed the order dimension of M, (i) \Rightarrow (iii) is a consequence of Lemma 1.

- (iii) \Rightarrow (ii): Let $\{a, b_1, b_2, b_3, c\}$ a five-element, nondistributive sublattice of M. By Lemma 4, a is covered by b_i and c covers b_i (i=1, 2, 3). Since no subset of M is isomorphic to D^3 , D_3 , D_1^2 or D_2^1 , it follows that at least one of the b_i 's has to be irreducible. Therefore, $\{a, b_1, b_2, b_3, c\}$ is not contained in $\mathfrak{N}(M)$. Thus $\mathfrak{N}(M)$ is distributive and has order dimension ≤ 2 by Theorem 3.
- (ii) \Rightarrow (i): Since $\Re(M)$ is distributive, every five-element, nondistributive sublattice M_3 of M must contain an irreducible element c, and we get by the same construction as in the proof of Lemma 4 that c has a cover c and a subcover c in M with c, c $\in M_3$. Let S be a sublattice of M generated by a finite subset F, and let I be the set of all irreducible elements of F contained in a five-element, nondistributive sublattice of M. We define I: $= \{c \mid c \in I\}$ and I: $= \{c \mid c \in I\}$. Since $(F \setminus I) \cup I$ is

contained in the distributive sublattice $\mathfrak{N}(L)$, the finite set $(F \setminus I) \cup I \cup I$ generates a finite sublattice T of M. Furthermore, we have $a \lor c = a \lor c$ and $b \land c = b \land c$ for $a, b \in M$ and $c \in I$ if $a \lor c \neq c \neq b \land c$. Hence $S \subseteq T \cup I$, and therefore \overline{S} is finite. Thus, every finitely generated sublattice of M is finite. Therefore, by Theorem 0, we can assume that M is finite. Let Dbe a maximal distributive sublattice of M with $\mathfrak{N}(M) \subseteq D$. By Theorem 3 and (ii), D has order dimension ≤ 2 . Now, we prove for every subset $E \supseteq D$ by induction on the cardinality of E that E has order dimension ≤ 2 . Suppose we have already seen that E can be represented by two chains $a_1a_2 \cdots a_r$ and $b_1b_2 \cdots b_r$. If there is a $c \in M$ with $c \notin E$, c is an irreducible element contained in a five-element, nondistributive sublattice. Since D is a maximal distributive sublattice containing $\mathfrak{N}(L)$ and since the length of the interval $[c_{-}, c_{-}]$ is two, there are exactly four elements c_{-}, b, d, c_{-} in the intersection $D \cap [c_{-}, c_{-}]$. There is, without loss of generality, i < k with $a_i = b$ and $a_k = d$. Let j be the smallest number with i < j and $a_i \leq a_i$. Furthermore, there is l < n with $b_i = d$ and $b_n = b$. Let m be the greatest number with m < n and $b_m \le b_n$.

Now, we assert that $E \cup \{c\}$ is represented by $a_1 \cdots a_{j-1}ca_j \cdots a_r$ and $b_1 \cdots b_m cb_{m+1} \cdots b_r$. Since x < c and c < y implies $x \le c$ and $c \le y$, the two orders extend the partial order on $E \cup \{c\}$. Next we have to prove that $a_p = b_q$ with $j \le p$ and m < q implies $c < a_p = b_q (c \le a_p = b_q)$. Suppose $c \le a_p = b_q$. Then we have $a_i \le a_p$ or $b_i \le b_q$. If $a_i \le a_p$, by i < p, it follows q < n. Because of m < q, we get $a_p = b_q \le b_n = a_i$ which contradicts i < p. If $a_i \le a_p$, we must have $b_i \le b_q$. This forces p < k because of l < q. Since $a_i \le a_p$, we have $b_n \le b_q$ and hence $n \le q$. If we let $c = b_s = a_t$ and $a_j = b_w$, then k < t, n < s, and w < n. Thus w < q, w < s, and j < t because p < k.

Hence $c^- \not \equiv a_p$, $a_i \not \equiv a_p$ and $a_i \not \equiv a_j$ implies $a_j \not \equiv a_p$ and $a_j \not \equiv c^-$. Since c^- covers a_i , we get $a_j \not \equiv a_p \land c^- = a_i$ which contradicts i < j. Thus, $c^- \not \equiv a_p = b_q$ is proved. Dually, it follows that $a_q = b_p$ with q < j and $p \not \equiv m$ implies $a_q = b_p < c$ ($a_q = b_p \not \equiv c_-$). This finishes the proof that $E \cup \{c\}$ is represented by $a_1 \cdots a_{j-1}ca_j \cdots a_r$ and $b_1 \cdots b_m cb_{m+1} \cdots b_r$. Therefore, M has order dimension ≤ 2 .

COROLLARY 6. Every finitely generated modular lattice of order dimension ≤ 2 is finite.

PROBLEM. For which natural numbers $n \ge 3$ does there exist a finite list of partially ordered sets (S_i, \le_i) such that a modular lattice has order dimension $\le n$ if and only if it contains no subset isomorphic to some of the (S_i, \le_i) .

REFERENCES

- 1. K. A. Baker, Dimension, join-independence, and breadth in partially ordered sets, Honors Thesis, Harvard University, Cambridge, Mass., 1961.
- 2. K. A. Baker, P. C. Fishburn and F. S. Roberts, *Partial orders of dimension* 2, interval orders, and interval graphs, Mimeographed, Rand Corporation, 1970.
- 3. B. Dushnik and E. W. Miller, *Partially ordered sets*, Amer. J. Math. 63 (1941), 600-610. MR 3, 73.
- 4. E. Harzheim, Ein Endlichkeitssatz über die Dimension teilweise geordneter Mengen, Math. Nachr. 46 (1970), 183-188. MR 43 #113.

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHÜLE DARMSTADT, FEDERAL REPUBLIC OF GERMANY