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ON  MODULAR  LATTICES  OF  ORDER  DIMENSION  TWO

RUDOLF  WILLE

Abstract. In this note, it is shown that a modular lattice

has order dimension ^2 if and only if ifcontains no subset iso-

morphic to one of five described partially ordered sets.

The order dimension of a partially ordered set iS, ^) is defined as the

smallest cardinal number m such that the relation < is the intersection

of m (linear) orders on S (Dushnik and Miller [3]). For the order dimen-

sion we have the following compactness theorem (Harzheim [4] and also

the review of K. A. Baker, MR 43 #113):

Theorem 0. Let (5\ ^) be apartially ordered set, and let nbe a natural

number. If every finite subset of S has order dimension ^n, then iS,^)

also has order dimension <n.—

In Baker, Fishburn and Roberts [2], it is shown that for n^.2 there is

no finite list of partially ordered sets with the property: A partially ordered

set iS, ^) has order dimension ¿« if and only if no subset of S is iso-

morphic to one of the partially ordered sets in the list. Moreover, there

does not exist such a list for lattices. The principal result of this note is

that for modular lattices and n=2 we have a checking list with five

finite partially ordered sets. Using Dilworth's theorem, Baker has proved

in [1] that a (finite) distributive lattice has order dimension ^n if and

only if it does not contain the partially ordered set of atoms and coatoms

of a boolean lattice with 2n+l elements. For the proof of the principal

result we need this theorem in the case n=2, hence we give a direct proof

for this case without using Dilworth's theorem.

If a partial order ^ on S is the intersection of orders Cu we say that

iS, 5í) is represented by the chains (5, C¡);if S:={sx,-■ • ,sn}, we de-

scribe a chain iS, C) by the sequence stjsit ■ • ■ sin where (í,-., j¿ ) e C if

and only if j^k.
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Lemma 1.    The following partially ordered sets have order dimension 3 :

Proof.   The following can be easily checked :

B3 is represented by

a2a3bxa1b2b3   and   a3axb2a2b3bx,axa2b3a3bxb

D3 is represented by

ab-iCjbiCjj^c^,   ab3c3b2c2bxcxc±   and   ab1b2b3cicxc2c3,

D\ is represented by

axbxcxb3c3a2b2c2,   a2b2axb3c3bxcxc2   and   axatbxb2b3c2c1c3.

Now, we have to prove that there is no representation of B3, D3 and D\

by any two chains. For B3 this follows from the fact that, for every chain

of a representation of B3, there is at most one / e {1, 2, 3} with ¿¿ • • • a¿

in that chain. Suppose D3 can be represented by two chains. Then,

because of bm^cn for mjtn^4, those two chains have to be of the form

• c,: • • • Z»,- • • • Cl ■ c.

and

ck ■ ■ ■ b,■■ ■ c, b{ ■ ■ • d i{i,j,k} = {1,2,3}),

which implies that c¡ • • ■ c4 is in both chains; this contradicts Cjd^Ci

in D3. Therefore, D3 cannot be represented by two chains. Suppose

D\ can be represented by two chains. Then, because of a2d£cx and a2^c3,

those two chains have to be of the form ax ■ ■ • c{ ■ ■ • c¡a2 • • • c2 and

a2ax ■ ■ ■ c2cfi       i{i,j} = {1,3}),

which implies that b( ■ • ■ c¡ is in both chains; this contradicts ¿»¿^c3

in D\. Therefore, D\ cannot be represented by two chains.

If D3 is the dual of D3 and D\ the dual of D\, Lemma 1 also shows that

D3 and D\ have order dimension 3. For Lemma 2 we need the following

notion : An element c of a lattice L with 0 is called a chain element of L

if the interval [0, c] is a chain.
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Lemma 2. Let L be a finite distributive lattice having no subset iso-

morphic to B3, and let c be a maximal chain element of L. Then L\[0, c]

is a sublattice of L.

Proof. Obviously, the join of any two elements of L\[0, c] is again

in L\[0, c]. Suppose there are a, b e L\[0, c] with aAb e [0, c]. Since c

is a maximal chain element of L, there exist ax^a and bx^b with ax^.cd^bx

and 67]^c^¿»!. Obviously, axAbx e [0, c]. We can assume, without loss

of generality, that axAc^.bxAc. Let a2 and c2 be covers of axAc with

a2^ax and c2^c, and let b2 be a cover of bxAc with Z»2=^i- Then ¿»2V

iaxAc) covers axAc; furthermore, a2^b2^iaxAc)^c2^a2. By distributivity,

it follows that {a2,b2yiaxAc),ci,b2yc2,a2yc2,a2vb2} is a subset of L

isomorphic to B3. This is a contradiction to our assumption. Therefore,

the meet of any two elements of L\[0, c] is again in L\[0, c], too.

Theorem 3. A distributive lattice has order dimension ^2 if and only

if it does not contain a subset isomorphic to B3.

Proof. By Lemma 1, a distributive lattice of order dimension ^2

cannot contain a subset isomorphic to B3. Now, let L be a distributive

lattice having no subset isomorphic to B3. First we prove by induction

on the cardinality of L: If L is finite and if c is any chain element of L,

then L can be represented by two chains axa2 ■ ■ ■ an and bxb2 • ■ ■ bn such

that [0, c] = {ax, a2, • ■ ■ , at) for some i^n. Let d be a maximal chain ele-

ment of L with c^d. By Lemma 2, L\[0, d] is a sublattice of L, which has

a least element v. Since L does not contain a subset isomorphic to B3,

dVv is a chain element of L\[0, d]. By the induction hypothesis, L\[0, d]

can be represented by two chains axa2 • • • am and bxb2 ■ • • bm with

lv,d\/v] = {axa2, • ■ • ,a¡} for some j^m. Now, it can be easily checked

that L is represented by the two chains

0 • • • id A ax)id A a2) • ■ • id A a,)axa2 • ■ • am

and

0 • • • id A ax)bki ■ ■ ■ bk^xid A a2)bkï ■ ■ ■ bk¡_xid A a,)bkj ■ ■ ■ bm

with ai=bk. for 1^/^y. This proves that L has order dimension ^2

if L is finite. Now, let L be infinite. Since every finite subset of L generates

a finite sublattice of L, each finite subset of L has order dimension ^2. But

then the whole lattice L also has order dimension ^2 by Theorem 0.

Lemma 4. Let M be a modular lattice having no subset isomorphic to

D3. If {a, cx, c2, c3, e) is a five-element, nondistributive sublattice of M

with a<cXe> then a is covered by ci and e covers c¿ (/=1, 2, 3).
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Proof. Suppose a is not covered by c, or e does not cover c¿ for some /'.

Then, by modularity, there is an element Z», in M with a<.bx<.cx. Define

¿»2 := ibxVc3)Ac2, b3 : = (¿>1Vc2)Ac3 and c4 := ibxVc2)Aibxvc3). Since

a<bXci and ciAci=bi for 1 ̂ ¿^3, the subset {a, bx, b2, b3, cx, c2, c3, c4}

is isomorphic to Ds.

/T\

An element a of a lattice L is said to be irreducible if bx, cx<a implies

bxVcx<.a and if a<b2, c2 implies a<.b2Ac2. Thus, irreducible elements are

exactly those elements which can be deleted from a sublattice with the

end result that a sublattice remains. Especially, 3liL) := {b e L\b is not

irreducible} is a sublattice of L.

Theorem 5. For a modular lattice M the following conditions are

equivalent :

(i) M has order dimension ^2.

(ii) ytiM) is distributive and has order dimension ^2.

(iii) M does not contain a subset isomorphic to B3, D3, D3, D\ or D\.

Proof. Since the order dimension of any subset of M cannot exceed

the order dimension of M, (i)=>(iii) is a consequence of Lemma 1.

(iii)=>(ii): Let {a, bx, b2, b3, c} a five-element, nondistributive sublattice

of M. By Lemma 4, a is covered by ¿>¿ and c covers bt (i=l, 2, 3). Since

no subset of M is isomorphic to D3, D3, D\ or D\, it follows that at least

one of the ¿>¿'s has to be irreducible. Therefore, {a, bx, b2, b3, c} is not

contained in 9Î(M). Thus ^(M) is distributive and has order dimension

^2 by Theorem 3.

(ii)=>(i): Since 9î(Af) is distributive, every five-element, nondistributive

sublattice M3 of M must contain an irreducible element c, and we get

by the same construction as in the proof of Lemma 4 that c has a cover c~~

and a subcover c_ in M with c~, c_e M3. Let S be a sublattice of M

generated by a finite subset F, and let /be the set of all irreducible elements

of F contained in a five-element, nondistributive sublattice of M. We

define T~ := {c~\c e 1} and /_ := {clce/}. Since (F\/)u7~u/_ is
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contained in the distributive sublattice 91(L), the finite set iF\I)(JÍ~Ul_

generates a finite sublattice T of M. Furthermore, we have aVc=aVc~

and bAc=bAc_ for a, b e M and c e I if aNc^cj^bAc. Hence S^ T\Jl,

and therefore S is finite. Thus, every finitely generated sublattice of M is

finite. Therefore, by Theorem 0, we can assume that M is finite. Let D

be a maximal distributive sublattice of M with yiiM)^ D. By Theorem 3

and (ii), D has order dimension <|2. Now, we prove for every subset

E^ D by induction on the cardinality of E that E has order dimension

^2. Suppose we have already seen that E can be represented by two chains

axa2 ■ ■ ■ ar and ¿»,¿»2 • ■ ■ bT. If there is a c e M with c $ E, c is an irreducible

element contained in a five-element, nondistributive sublattice. Since D

is a maximal distributive sublattice containing 9Î(L) and since the length

of the interval [c_, c~ ] is two, there are exactly four elements c_, b, d, c~

in the intersection L>n[e_, c~]. There is, without loss of generality,

i<k with a(=b and ak=d. Let j be the smallest number with z'<y and

a^üj. Furthermore, there is /<« with bt=d and bn=b. Let m be the

greatest number with m<n and bm^bn.

Now, we assert that EKJ{c} is represented by ax • • • a¡_xcaj • • • ar and

bx • ■ • bmcbm+x • • ■ br. Since x<c and c<y implies x^c_ and c~^y,

the two orders extend the partial order on £U{c}. Next we have to prove

that av=bq with j^p and m<q implies c<.aj,=bQic~^av=bq). Suppose

c~%aP=bq. Then we have a.-^flj, or bt%bq. If c^a,,, by i<p, it follows

9<«. Because of m<q, we get av=bq^bn=ai which contradicts /</>. If

a.^ûj,, we must have bt^bq. This forces /»</c because of /<^. Since

a^av, we have bn^bq and hence »^. If we let c~=bs=at and aj=bw,

then rV<f, «<5, and vv<«. Thus w<#, w<s, and y'<r because /?<&.
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Hence c~^a„, at^av and a^a, implies a^a,, and a^c~. Since c~

coversOj, we getaj^avAc~=ai which contradicts z'<y. Thus, c~ ^av=ba is

proved. Dually, it follows that aq=bP with q<j andp^m implies aa=bv<.

c iaq=bp^c_). This finishes the proof that £U{c} is represented by ax • • •

flj-ica, • • • aT and ¿>, • • • Z»mc¿»m+1 ■ • • bT. Therefore, A/ has order dimension

S2.

Corollary 6. £i>ery finitely generated modular lattice of order

dimension ^2 is finite.

Problem. For which natural numbers n^.3 does there exist a finite

list of partially ordered sets iSit ^,) such that a modular lattice has order

dimension ^n if and only if it contains no subset isomorphic to some of the

(St,^).
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