A NOTE ON DEDEKIND RINGS

RYÛKI MATSUDA

ABSTRACT. We prove the following theorem: let R be a commutative ring without zero-divisors. If every ideal in R is a product of prime ideals $\neq R$, R has the identity.

To prove the theorem stated in the abstract, let R be a ring satisfying the hypotheses and K its quotient field. We denote $(R:R)_K$ by R^{-1} . The facts $R^{-1} \ni 1$ and $R^{-1}R = R$ are immediate by the definition. If aR^{-1} coincides with R for all $a \ne 0$ of R, we have $R = a^2R^{-1} = aR$.

Then we have a=ab for some b of R. We see that b is the identity of R. We may suppose therefore that dR^{-1} is a proper subset of R. Since dR^{-1} is an ideal, there exist prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_n$ such that

$$dR^{-1} = \mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_n \qquad (n \ge 1).$$

There exist prime ideals g_1, g_2, \dots, g_m also such that $p_n R = g_1 g_2 \dots g_m$. Every g_i contains p_n and p_n contains g_j for some j, say 1. If $p_n R$ is a proper subset of p_n , we have

$$\mathfrak{p}_n R = \mathfrak{p}_n \mathfrak{g}_2 \cdots \mathfrak{g}_m \qquad (m \ge 2).$$

Multiplying $d^{-1}R \cdot \mathfrak{p}_1\mathfrak{p}_2 \cdots \mathfrak{p}_{n-1}$ on the both sides, we have $R^2 = R\mathfrak{g}_2 \cdots \mathfrak{g}_m$. There arises the contradiction of $R \subset \mathfrak{g}_m$. Therefore $\mathfrak{p}_n R$ coincides with \mathfrak{p}_n . We have

$$dR^{-1}R = \mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_nR = \mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_n = dR^{-1}.$$

Therefore we see that $R^{-1}R$ is R^{-1} , hence we have

$$R = R^{-1}R = R^{-1} \ni 1$$
.

This concludes the proof of our assertion.

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN

Received by the editors August 15, 1973.

AMS (MOS) subject classifications (1970). Primary 13F05.

[©] American Mathematical Society 1974