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FULLY IDEMPOTENT RINGS HAVE REGULAR
CENTROIDS

R. C. COURTER

ABSTRACT. We prove that the centroid of a ring all of whose
ideals are idempotent is commutative and regular in the sense of
von Neumann. The center of a fully idempotent ring is regular.
Evidently every regular ring is fully idempotent. One nonregular
example is Sasiada’s simple radical ring. A subring of the countably
infinite row-finite matrices over Sasiada’s ring provides an example
of a nonsimple, indecomposable, nonregular fully idempotent
ring.

A ring is called fully idempotent when each ideal equals its square;
this is equivalent to saying that each factor ring of the ring is semiprime
[1, p. 418]. One result to be proved states that the centroid of a fully
idempotent ring is a field if and only if the ring is indecomposable. Thus
we deduce the following theorem:

THEOREM. If each factor ring of a prime ring is semiprime, its centroid
is a field.

Our results could be applied to commutative rings; consequently we
find it appropriate to prove, using statements in the literature, that fully
idempotent duo rings are regular.

We will need the following theorem and corollary:

THEOREM A. A ring R is fully idempotent if and only if t € HtH for
every ideal H and every t € H.

PrROOF OF NECESSITY. If te€ Y where Y is a fully idempotent ring,
then t € YtY [1, Proposition 2.3, p. 421]. It is clear, however, that an
ideal H of a fully idempotent ring R has only idempotent ideals. For
let ¥ be an H-ideal and let ¥=V+VR+RV+RVR. Then V< H so that
V3 HVH< V. Thus the R-ideal P=¥3< V, so that V=V is idempotent.

COROLLARY. H=HtH=RtR, when H is the ideal generated by t.
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1. The centroid of a fully idempotent ring. Rings are not assumed
to have a unit element. We shall denote by C(R) or C the centroid of a
ring R (please see [3, p. 64] for the definition). Evidently, when R has
a unit element, the center of R is its centroid.

Notation. We shall write x—x°, xe R, c € C.

We have from [3, p. 64] that

*) (xy)y=xy=xy°,x,y€R,ceC,

(**) Cis commutative if R=R?.

LEMMA 1.1. Let ceC and t€ R. Then the ideal RtR is invariant
under c.

PrROOF. Apply (*) to the typical element >, r;ts,.
In the results to follow the ring R is fully idempotent.

LeEMMA 1.2. Letc € C, and let t € R¢. Then there is an element x € RtR
such that x*=t.

Proor. If z¢=t, (5 r,zs;)°=7> r;ts, for all choices of r; and s;, whence
RtR< Re. By the corollary to Theorem A, t= 3} m,tn, for some elements
m; and n; in RtR. Thus for i=1, -, k, elements p; exist such that
pi=m;. Let x=7 p,tn,. Then x°=73 m,tn;=t, as required.

LemMA 1.3. Ifce C, then R°N(ker ¢)=0.

ProoF. Let ¢ € (ker )N R°. For some x € RtR, x°=t by Lemma 1.2.
But (RtR)°’=Rt°R=0, so that t=x°=0.

For any element r € R, we have shown that r’=x° for some x € Rr°R.
Thus r=x+(r—x) belongs to R°+ (ker ¢). Considering Lemma 1.3, we
have proved the following theorem:

THEOREM 1.4. R=R°®(ker c).

THEOREM 1.5. The centroid C of a fully idempotent ring R is regular
and commutative. It is a field if and only if R is not the direct sum of two
nonzero ideals.

ProofF. C is commutative by (**). In the indecomposable case,
if 0% ¢ € C, R°=R and (ker ¢)=0 by Theorem 1.4, so that c is invertible;
C is a field. To conclude the proof of the second statement we note that
C has zero divisors when R is decomposable (the implied projections
belong to C).

If ce C and x € R°, Lemma 1.2 implies that x=y° for some y € R°;
this y is unique since R° N(ker ¢)=0. We define a map k by

tk=¢ (t € (ker ¢)),
xk =1y (x € RY),
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where y € R° is such that y°=x. It is easily verified that k € C and that
c¢=ckec. C is a commutative regular ring.

CoOROLLARY. The center S of R is regular.

ProoF. C contains S, since R is a faithful R-module and thus is a
faithful S-module. For each c € C, s € S and r € R we have

re = (rs)° = rs°, s°r = (sr)° = (rs)° = rs°.

Thus the function sc belongs to S; S is an ideal of the commutative
regular ring C, whence S is a regular ring [3, Theorem 22, p. 30].
A ring having no strictly one-sided ideals is called a duo ring.

THEOREM 1.6. A fully idempotent duo ring is regular.

ProoF. Lajos has proved [4, Theorem 2}: A ring R is a regular duo
ring if and only if 4 NB=AB for every left ideal 4 and every right ideal
B. The equality holds for the ideals A and B of a fully idempotent ring
(please see [1, (C) of Theorem 1.2, p. 418]).

2. An example of an indecomposable, nonregular, fully idempotent ring.
Sasiada’s simple radical ring [5] is an example, since the radical of a regular
ring is zero [2, p. 42]. We present a nonsimple example.

Notation. Let S be aring. Let 4=A(S) be the set of all row-finite matrices
with entries in S, where the number of rows and columns is countably
infinite. If ¢ € S, ¢tE;; will signify the matrix with ¢ in the (i, j) position
and zeros elsewhere. B=B(S) will denote the subring of 4 generated by
all matrices in the form tE;, t € S, 1 =i, j<co; Y(S) will be the subring
of A all of whose elements have the form diag(s, * - -) for some s € S.
Let T=T(S) be the subring of 4 generated by Y(S) and B(S); thus
T(S)=Y(S)+ B(S), a direct sum of groups.

ReEMARK 2.1. B(S)is an ideal of T(S).

REMARK 2.2. B(S) is locally matrix over S. Thus B(S) is simple if
S is simple; B(S) is a radical ring if S is a radical ring.

PROPOSITION 2.3. If S is a simple ring, T(S) is a fully idempotent ring
with minimum nonzero ideal B(S).

Proor. For veT which does not belong to B, we write v=
diag(s, - - )+b where 0s#s€ S and where, for some positive integer
n, b is a matrix whose (i, j) entry is zero for i, j>n. Fix m>n. For each
pandgin S we have

PSQE;; = (PE;,,)v(QE,,;) = (pE;,)[diag(s, - - )I(gE,.;)

in the ideal ¥ generated by v. Thus the ideal V contains B and has in it
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the element diag(s, - - -) just described. Clearly, Y(S)< V; V=T; T and
B are the only nonzero ideals of T. The simple ring B equals its square.
Then T=T?, since Y(S)=[Y(S)]2.

THEOREM 2.4. If S is a simple radical ring, T(S) is a nonsimple, inde-
composable, nonregular, fully idempotent ring.

Proor. By Proposition 2.3, T is nonsimple, indecomposable, and
fully idempotent. Each element of B has a quasi-inverse by Remark 2.2.
Since T(S)/B(S)==S has no primitive ideals, 7(S) is a radical ring and is
nonregular.
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