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FULLY  IDEMPOTENT  RINGS  HAVE  REGULAR

CENTROIDS

R.   C.  COURTER

Abstract. We prove that the centroid of a ring all of whose

ideals are idempotent is commutative and regular in the sense of

von Neumann. The center of a fully idempotent ring is regular.

Evidently every regular ring is fully idempotent. One nonregular

example is Sasiada's simple radical ring. A subring of the countably

infinite row-finite matrices over Sasiada's ring provides an example

of a nonsimple, indecomposable, nonregular fully idempotent

ring.

A ring is called fully idempotent when each ideal equals its square;

this is equivalent to saying that each factor ring of the ring is semiprime

[1, p. 418]. One result to be proved states that the centroid of a fully

idempotent ring is a field if and only if the ring is indecomposable. Thus

we deduce the following theorem:

Theorem. If each factor ring of a prime ring is semiprime, its centroid

is afield.

Our results could be applied to commutative rings; consequently we

find it appropriate to prove, using statements in the literature, that fully

idempotent duo rings are regular.

We will need the following theorem and corollary:

Theorem A. A ring R is fully idempotent if and only if t e HtH for

every ideal H and every t e H.

Proof of necessity. If t e Y where Y is a fully idempotent ring,

then te YtY [1, Proposition 2.3, p. 421]. It is clear, however, that an

ideal H of a fully idempotent ring R has only idempotent ideals. For

let V be an //-ideal and let V= V+ VR+RV+RVR. Then Fç H so that
V3^HVHç V. Thus the /(-ideal V = V3ç V, so that V= V is idempotent.

Corollary.    H=HtH=RtR, when H is the ideal generated by t.
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1. The centroid of a fully idempotent ring. Rings are not assumed

to have a unit element. We shall denote by C(R) or C the centroid of a

ring R (please see [3, p. 64] for the definition). Evidently, when R has

a unit element, the center of R is its centroid.

Notation.    We shall write x-*xc, x e R, c e C.

We have from [3, p. 64] that
(*) ixy)c=xcy=xyc, x,y e R, c e C,

(**) C is commutative if R=R2.

Lemma 1.1. Let ceC and t e R. Then the ideal RtR is invariant

under c.

Proof.   Apply (*) to the typical element 2 ¡"¿Si-

In the results to follow the ring R is fully idempotent.

Lemma 1.2. Let ceC, and let t e Rc. Then there is an element x e RtR

such that xc = t.

Proof. If zc=t, (2 rizsi)c= 2 rttst for all choices of r{ and st, whence

BtR^ Rc. By the corollary to Theorem A, r= 2Ï rnttn¡ for some elements

wj¿ and ni in RtR. Thus for /= 1, • • • , k, elements pt exist such that

p*ssm{. Let x=^pitni. Then xc=2 rnitni = t, as required.

Lemma 1.3.   // c e C, then R° n (ker c)=0.

Proof. Let t e (ker c)r\Rc. For some x e RtR, xc=t by Lemma 1.2.

But (RtR)c=RtcR=0, so that r=xc=0.

For any element r e R, we have shown that rc=xc for some x e RrcR.

Thus r = x+(r—x) belongs to Rc+(kerc). Considering Lemma 1.3, we

have proved the following theorem:

Theorem 1.4.   /v=/vc©(ker c).

Theorem 1.5. The centroid C of a fully idempotent ring R is regular

and commutative. It is afield if and only if R is not the direct sum of two

nonzero ideals.

Proof. C is commutative by (**). In the indecomposable case,

if Ot^c e C, Re=R and (ker c)=0 by Theorem 1.4, so that c is invertible;

C is a field. To conclude the proof of the second statement we note that

C has zero divisors when R is decomposable (the implied projections

belong to C).
If c e C and x e Rc, Lemma 1.2 implies that x=y" for some y e Rc;

this y is unique since Rc n(ker c)=0. We define a map k by

tk = t       (te (ker c)),

xk=y      (xe R°),
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where y e Rc is such that yc=x. It is easily verified that keC and that

c=ckc. C is a commutative regular ring.

Corollary.    77¡e center S of R is regular.

Proof. C contains 5, since R is a faithful /(-module and thus is a

faithful S-module. For each c e C, s e S and r e Äwe have

rsc = irs)c = rsc,       scr = isr)e = irs)c = rsc.

Thus the function sc belongs to S; S is an ideal of the commutative

regular ring C, whence S is a regular ring [3, Theorem 22, p. 30].

A ring having no strictly one-sided ideals is called a duo ring.

Theorem 1.6.    A fully idempotent duo ring is regular.

Proof. Lajos has proved [4, Theorem 2] : A ring R is a regular duo

ring if and only if A C\B=AB for every left ideal A and every right ideal

B. The equality holds for the ideals A and B of a fully idempotent ring

(please see [1, (C) of Theorem 1.2, p. 418]).

2. An example of an indecomposable, nonregular, fully idempotent ring.

Sasiada's simple radical ring [5] is an example, since the radical of a regular

ring is zero [2, p. 42]. We present a nonsimple example.

Notation. Let S be a ring. Let A =AiS) be the set of all row-finite matrices

with entries in S, where the number of rows and columns is countably

infinite. If / e S, tE{j will signify the matrix with t in the (/,/) position

and zeros elsewhere. B=BiS) will denote the subring of A generated by

all matrices in the form tEu, teS, l^/,y'<co; YiS) will be the subring

of A all of whose elements have the form diag(s, ■ ■ •) for some seS.

Let T=TiS) be the subring of A generated by YiS) and 5(5); thus

TiS)= YiS)+BiS), a direct sum of groups.

Remark 2.1.    BiS) is an ideal of TiS).

Remark 2.2. BiS) is locally matrix over S. Thus BiS) is simple if

S is simple; BiS) is a radical ring if S is a radical ring.

Proposition 2.3. If S is a simple ring, TiS) is a fully idempotent ring

with minimum nonzero ideal BiS).

Proof. For v e T which does not belong to B, we write v=

diag(s, • • -) + b where 0^¿seS and where, for some positive integer

n, b is a matrix whose (/,y) entry is zero for i,j>«. Fix m>n. For each

p and q in S we have

psqEtí = ipEim)viqEm¡) = (/>£ím)[diag(í, • • -)]iqEmj)

in the ideal V generated by v. Thus the ideal V contains B and has in it
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the element diag(j, • ■ •) just described. Clearly, YiS)^ V; V=T; T and

B are the only nonzero ideals of T. The simple ring B equals its square.

Then T=T2, since y(5)=[T(5)]2.

Theorem 2.4. If S is a simple radical ring, TiS) is a nonsimple, inde-

composable, nonregular, fully idempotent ring.

Proof. By Proposition 2.3, T is nonsimple, indecomposable, and

fully idempotent. Each element of B has a quasi-inverse by Remark 2.2.

Since TiS)/BiS)^S has no primitive ideals, TiS) is a radical ring and is

nonregular.
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